
Communications
Toolbox

For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 3

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Communications Toolbox User’s Guide
© COPYRIGHT 1996–2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may
be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and
Documentation by, for, or through the federal government of the United States. By accepting
delivery of the Program or Documentation, the government hereby agrees that this software
or documentation qualifies as commercial computer software or commercial computer software
documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS
252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights
specified in this Agreement, shall pertain to and govern the use, modification, reproduction,
release, performance, display, and disclosure of the Program and Documentation by the federal
government (or other entity acquiring for or through the federal government) and shall supersede
any conflicting contractual terms or conditions. If this License fails to meet the government’s needs
or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered
trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:
April 1996 First printing New
May 1997 Second printing Revised for MATLAB 5
September 2000 Third printing Revised for Version 2 (Release 12)
May 2001 Online only Revised for Version 2.0.1 (Release 12.1)
July 2002 Fourth printing Revised for Version 2.1 (Release 13)
June 2004 Fifth printing Revised for Version 3.0 (Release 14)

Contents

Getting Started

1
What Is the Communications Toolbox? 1-2

Expected Background . 1-2

Studying Components of a Communication
System . 1-4
Modulating a Random Signal . 1-4
Plotting Signal Constellations . 1-11
Incorporating Gray Coding . 1-15
Pulse Shaping Using a Raised Cosine Filter 1-17
Using a Convolutional Code . 1-21

Simulating a Communication System 1-26
Using BERTool to Run Simulations . 1-26
Varying Parameters and Managing a Set of

Simulations . 1-33

Learning More . 1-37
Online Help . 1-37
Demos . 1-37
The MathWorks Online . 1-37

Signal Sources

2
White Gaussian Noise . 2-2

Random Symbols . 2-3

Random Integers . 2-4

i

Random Bit Error Patterns . 2-5

Performance Evaluation

3
Performance Results via Simulation 3-2

Using Simulated Data to Compute Bit and Symbol Error
Rates . 3-2

Example: Computing Error Rates . 3-3
Comparison of Symbol Error Rate and Bit Error

Rate . 3-3

Performance Results via the Semianalytic
Technique . 3-5
When to Use the Semianalytic Technique 3-5
Procedure for the Semianalytic Technique 3-6
Example: Using the Semianalytic Technique 3-7

Theoretical Performance Results . 3-9
Plotting Theoretical Error Rates . 3-9
Comparing Theoretical and Empirical Error

Rates . 3-10

Error Rate Plots . 3-13
Creating Error Rate Plots Using semilogy 3-13
Curve Fitting for Error Rate Plots . 3-13
Example: Curve Fitting for an Error Rate Plot 3-14

Eye Diagrams . 3-19
Example: Eye Diagrams . 3-19

Scatter Plots . 3-22
Example: Scatter Plots . 3-22

Selected Bibliography for Performance
Evaluation . 3-25

ii Contents

BERTool: A Bit Error Rate Analysis GUI

4
Summary of Features . 4-2

Opening BERTool . 4-3

The BERTool Environment . 4-4
Components of BERTool . 4-4
Interaction Among BERTool Components 4-5

Computing Theoretical BERs . 4-7
Example: Using the Theoretical Panel in

BERTool . 4-8
Available Sets of Theoretical BER Data 4-10

Using the Semianalytic Technique to Compute
BERs . 4-14
Example: Using the Semianalytic Panel in

BERTool . 4-15
Procedure for Using the Semianalytic Panel in

BERTool . 4-17

Running MATLAB Simulations . 4-20
Example: Using a MATLAB Simulation with

BERTool . 4-20
Varying the Stopping Criteria . 4-23
Plotting Confidence Intervals . 4-24
Fitting BER Points to a Curve . 4-26

Preparing Simulation Functions for Use with
BERTool . 4-27
Requirements for Functions . 4-27
Template for a Simulation Function 4-28
Example: Preparing a Simulation Function for Use with

BERTool . 4-31

Running Simulink Simulations . 4-35
Example: Using a Simulink Model with

BERTool . 4-36

iii

Varying the Stopping Criteria . 4-39

Preparing Simulink Models for Use with
BERTool . 4-41
Requirements for Models . 4-41
Tips for Preparing Models . 4-41
Example: Preparing a Model for Use with

BERTool . 4-44

Managing BER Data . 4-49
Exporting Data Sets or BERTool Sessions 4-49
Importing Data Sets or BERTool Sessions 4-53
Managing Data in the Data Viewer . 4-54

Source Coding

5
Quantizing a Signal . 5-2

Representing Partitions . 5-2
Representing Codebooks . 5-2
Scalar Quantization Example 1 . 5-3
Scalar Quantization Example 2 . 5-3
Determining Which Interval Each Input Is In 5-4

Optimizing Quantization Parameters 5-6
Example: Optimizing Quantization Parameters 5-6

Differential Pulse Code Modulation 5-7
DPCM Terminology . 5-7
Representing Predictors . 5-7
Example: DPCM Encoding and Decoding 5-8

Optimizing DPCM Parameters . 5-10
Example: Comparing Optimized and Nonoptimized DPCM

Parameters . 5-10

Companding a Signal . 5-12
Example: A µ-Law Compander . 5-12

iv Contents

Huffman Coding . 5-14
Creating a Huffman Code Dictionary 5-14
Example: Creating and Decoding a Huffman

Code . 5-15

Arithmetic Coding . 5-16
Representing Arithmetic Coding Parameters 5-16
Example: Creating and Decoding an Arithmetic

Code . 5-16

Selected Bibliography for Source Coding 5-17

Error-Control Coding

6
Block Coding . 6-2

Block Coding Features of the Toolbox 6-3
Block Coding Terminology . 6-4
Representing Words for Reed-Solomon Codes 6-5
Parameters for Reed-Solomon Codes . 6-5
Creating and Decoding Reed-Solomon Codes 6-7
Representing Words for BCH Codes 6-11
Parameters for BCH Codes . 6-12
Creating and Decoding BCH Codes . 6-12
Representing Words for Linear Block Codes 6-15
Parameters for Linear Block Codes . 6-18
Creating and Decoding Linear Block Codes 6-23
Performing Other Block Code Tasks 6-26
Selected Bibliography for Block Coding 6-28

Convolutional Coding . 6-30
Convolutional Coding Features of the Toolbox 6-30
Polynomial Description of a Convolutional

Encoder . 6-30
Trellis Description of a Convolutional Encoder 6-34
Creating and Decoding Convolutional Codes 6-38
Examples of Convolutional Coding . 6-40
Selected Bibliography for Convolutional Coding 6-43

v

Interleaving

7
Block Interleavers . 7-2

Block Interleaving Features of the Toolbox 7-2
Example: Block Interleavers . 7-3

Convolutional Interleavers . 7-5
Convolutional Interleaving Features of the

Toolbox . 7-6
Example: Convolutional Interleavers 7-7
Delays of Convolutional Interleavers . 7-9

Selected Bibliography for Interleaving 7-14

Modulation

8
Modulation Features of the Toolbox 8-2

Baseband Versus Passband Simulation 8-2

Modulation Terminology . 8-4

Analog Modulation . 8-5
Representing Analog Signals . 8-5
Analog Modulation Example . 8-6

Digital Modulation . 8-8
Representing Digital Signals . 8-8
Baseband Modulated Signals Defined 8-9
Examples of Digital Modulation and

Demodulation . 8-9
Plotting Signal Constellations . 8-12

vi Contents

Selected Bibliography for Modulation 8-17

Special Filters

9
Noncausality and the Group Delay Parameter 9-2

Example: Compensating for Group Delays When Analyzing
Data . 9-3

Designing Hilbert Transform Filters 9-5
Example with Default Parameters . 9-5

Filtering with Raised Cosine Filters 9-7
Sampling Rates . 9-7
Designing Filters Automatically . 9-8
Specifying Filters Using Input Arguments 9-9
Controlling the Rolloff Factor . 9-9
Controlling the Group Delay . 9-10
Combining Two Square-Root Raised Cosine

Filters . 9-11

Designing Raised Cosine Filters . 9-13
Sampling Rates . 9-13
Example Designing a Square-Root Raised Cosine

Filter . 9-13
Other Options in Filter Design . 9-14

Selected Bibliography for Special Filters 9-15

Channels

10
Channel Features of the Toolbox . 10-2

vii

AWGN Channel . 10-3
Describing the Noise Level of an AWGN

Channel . 10-3

Fading Channels . 10-6
Overview of Fading Channels . 10-6
Specifying Fading Channels . 10-7
Configuring Channel Objects . 10-11
Using Fading Channels . 10-14
Examples Using Fading Channels . 10-15

Binary Symmetric Channel . 10-24
Example: Introducing Noise in a Convolutional

Code . 10-24

Selected Bibliography for Channels 10-26

Equalizers

11
Equalizer Features of the Toolbox . 11-2

Overview of Adaptive Equalizer Classes 11-3
Symbol-Spaced Equalizers . 11-3
Fractionally Spaced Equalizers . 11-5
Decision-Feedback Equalizers . 11-6

Using Adaptive Equalizer Functions and
Objects . 11-8
Basic Procedure for Equalizing a Signal 11-8
Example Illustrating the Basic Procedure 11-8
Learning More About Adaptive Equalizer

Functions . 11-9

Specifying an Adaptive Algorithm 11-10

viii Contents

Choosing an Adaptive Algorithm . 11-10
Indicating a Choice of Adaptive Algorithm 11-11
Accessing Properties of an Adaptive Algorithm 11-12

Specifying an Adaptive Equalizer 11-13
Defining an Equalizer Object . 11-13
Accessing Properties of an Equalizer 11-14

Using Adaptive Equalizers . 11-17
Equalizing Using a Training Sequence 11-17
Equalizing in Decision-Directed Mode 11-19
Delays from Equalization . 11-21
Equalizing Using a Loop . 11-22

Using MLSE Equalizers . 11-28
Equalizing a Vector Signal . 11-28
Equalizing in Continuous Operation Mode 11-29
Using a Preamble or Postamble . 11-33

Selected Bibliography for Equalizers 11-35

Galois Field Computations

12
Galois Field Terminology . 12-3

Representing Elements of Galois Fields 12-4
Creating a Galois Array . 12-4
Example: Creating Galois Field Variables 12-5
Example: Representing Elements of GF(8) 12-6
How Integers Correspond to Galois Field

Elements . 12-7
Example: Representing a Primitive Element 12-8
Primitive Polynomials and Element

Representations . 12-8

ix

Arithmetic in Galois Fields . 12-13
Example: Addition and Subtraction 12-14
Example: Multiplication . 12-15
Example: Division . 12-16
Example: Exponentiation . 12-17
Example: Elementwise Logarithm 12-18

Logical Operations in Galois Fields 12-19
Testing for Equality . 12-19
Testing for Nonzero Values . 12-20

Matrix Manipulation in Galois Fields 12-21
Basic Manipulations of Galois Arrays 12-21
Basic Information About Galois Arrays 12-22

Linear Algebra in Galois Fields . 12-23
Inverting Matrices and Computing

Determinants . 12-23
Computing Ranks . 12-24
Factoring Square Matrices . 12-24
Solving Linear Equations . 12-25

Signal Processing Operations in Galois
Fields . 12-27
Filtering . 12-27
Convolution . 12-28
Discrete Fourier Transform . 12-28

Polynomials over Galois Fields . 12-30
Addition and Subtraction of Polynomials 12-30
Multiplication and Division of Polynomials 12-30
Evaluating Polynomials . 12-31
Roots of Polynomials . 12-32
Roots of Binary Polynomials . 12-32
Minimal Polynomials . 12-33

Manipulating Galois Variables . 12-35

x Contents

Determining Whether a Variable Is a Galois
Array . 12-35

Extracting Information from a Galois Array 12-35

Speed and Nondefault Primitive
Polynomials . 12-38

Selected Bibliography for Galois Fields 12-40

Galois Fields of Odd Characteristic

13
Galois Field Terminology . 13-3

Representing Elements of Galois Fields 13-4
Exponential Format . 13-4
Polynomial Format . 13-5
List of All Elements of a Galois Field 13-5
Nonuniqueness of Representations . 13-7

Default Primitive Polynomials . 13-8

Converting and Simplifying Element
Formats . 13-9
Converting to Simplest Polynomial Format 13-9
Example: Generating a List of Galois Field

Elements . 13-11
Converting to Simplest Exponential Format 13-11

Arithmetic in Galois Fields . 13-13
Arithmetic in Prime Fields . 13-13
Arithmetic in Extension Fields . 13-13

xi

Polynomials over Prime Fields . 13-16
Cosmetic Changes of Polynomials . 13-16
Polynomial Arithmetic . 13-17
Characterization of Polynomials . 13-17
Roots of Polynomials . 13-18

Other Galois Field Functions . 13-21

Selected Bibliography for Galois Fields 13-22

Functions — Categorical List

14
Signal Sources . 14-3

Performance Evaluation . 14-4

Source Coding . 14-5

Error-Control Coding . 14-6

Interleaving/Deinterleaving . 14-7

Analog Modulation/Demodulation . 14-9

Digital Modulation/Demodulation 14-10

Pulse Shaping . 14-11

Special Filters . 14-11

xii Contents

Lower-Level Functions for Special Filters 14-11

Channels . 14-11

Equalizers . 14-13

Galois Field Computations . 14-14

Computations in Galois Fields of Odd
Characteristic . 14-17

Utilities . 14-19

Graphical User Interface . 14-20

Functions — Alphabetical List

15

Examples

A
Modulation . A-2

Special Filters . A-3

Convolutional Coding . A-4

Simulating Communication Systems A-5

xiii

Performance Evaluation . A-6

Source Coding . A-7

Block Coding . A-8

Interleaving . A-9

Channels . A-10

Equalizers . A-11

Galois Field Computations . A-12

Index

xiv Contents

1

Getting Started

This chapter first provides a brief overview of the Communications
Toolbox and then uses several examples to help you get started using the
toolbox. This chapter assumes very little about your prior knowledge of
MATLAB®, although it still assumes that you have a basic knowledge about
communications subject matter.

“What Is the Communications
Toolbox?” (p. 1-2)

The toolbox and the kinds of tasks
it can perform

“Studying Components of a
Communication System” (p. 1-4)

Using toolbox functions to create
communications building blocks

“Simulating a Communication
System” (p. 1-26)

Assembling components to form a
simulation

“Learning More” (p. 1-37) Other resources for learning about
the Communications Toolbox

1 Getting Started

What Is the Communications Toolbox?
The Communications Toolbox extends the MATLAB technical computing
environment with functions, plots, and a graphical user interface for
exploring, designing, analyzing, and simulating algorithms for the physical
layer of communication systems. The toolbox helps you create algorithms for
commercial and defense wireless or wireline systems.

The key features of the toolbox are

• Functions for designing the physical layer of communications links,
including source coding, channel coding, interleaving, modulation, channel
models, and equalization

• Plots such as eye diagrams and constellations for visualizing
communications signals

• Graphical user interface for comparing the bit error rate of your system
with a wide variety of proven analytical results

• Galois field data type for building communications algorithms

Expected Background
This guide assumes that you already have background knowledge in the
subject of communications. If you do not yet have this background, then you
can acquire it using a standard communications text or the books listed in one
of this guide’s sections titled “Selected Bibliography for... .”

For New Users
The discussion and examples in this chapter are aimed at new users.
Continue reading this chapter and try out the examples. Then read those
subsequent chapters that address the specific areas that concern you. When
you find out which functions you want to use, refer to the online reference
pages that describe those functions.

For Experienced Users
The online reference descriptions are probably the most relevant parts of this
guide for you. Each reference description includes the function’s syntax as
well as a complete explanation of its options and operation. Many reference

1-2

What Is the Communications Toolbox?

descriptions also include examples, a description of the function’s algorithm,
and references to additional reading material.

You might also want to browse through nonreference parts of this
documentation set, depending on your interests or needs.

1-3

1 Getting Started

Studying Components of a Communication System
The Communications Toolbox implements a variety of communications-related
tasks. Many of the functions in the toolbox perform computations associated
with a particular component of a communication system, such as a
demodulator or equalizer. Other functions are designed for visualization
or analysis.

While the later chapters of this document discuss various toolbox features
in more depth, this section builds an example step by step to give you a first
look at the toolbox. This section also shows how tools in the Communications
Toolbox build upon the computational and visualization tools in the
underlying MATLAB environment. The topics are as follows:

• “Modulating a Random Signal” on page 1-4

• “Plotting Signal Constellations” on page 1-11

• “Incorporating Gray Coding” on page 1-15

• “Pulse Shaping Using a Raised Cosine Filter” on page 1-17

• “Using a Convolutional Code” on page 1-21

Modulating a Random Signal
This first example addresses the following problem:

Problem Process a binary data stream using a communication system that
consists of a baseband modulator, channel, and demodulator. Compute the
system’s bit error rate (BER). Also, display the transmitted and received
signals in a scatter plot.

The table below indicates the key tasks in solving the problem, along
with relevant functions from the Communications Toolbox. The solution
arbitrarily chooses baseband 16-QAM (quadrature amplitude modulation) as
the modulation scheme and AWGN (additive white Gaussian noise) as the
channel model.

1-4

Studying Components of a Communication System

Task Function

Generate a random binary data stream randint

Modulate using 16-QAM qammod

Add white Gaussian noise awgn

Create a scatter plot scatterplot

Demodulate using 16-QAM qamdemod

Compute the system’s BER biterr

Solution of Problem
The discussion below describes each step in more detail, introducing M-code
along the way. To view all the code in one editor window, enter the following
in the MATLAB Command Window.

edit commdoc_mod

1. Generate a Random Binary Data Stream. The conventional format
for representing a signal in MATLAB is a vector or matrix. This example uses
the randint function to create a column vector that lists the successive values
of a binary data stream. The length of the binary data stream (that is, the
number of rows in the column vector) is arbitrarily set to 30,000.

Note The sampling times associated with the bits do not appear explicitly,
and MATLAB has no inherent notion of time. For the purpose of this example,
knowing only the values in the data stream is enough to solve the problem.

The code below also creates a stem plot of a portion of the data stream,
showing the binary values. Your plot might look different because the example
uses random numbers. Notice the use of the colon (:) operator in MATLAB
to select a portion of the vector. For more information about this syntax, see
“The Colon Operator” in the MATLAB documentation set.

%% Setup
% Define parameters.

1-5

1 Getting Started

M = 16; % Size of signal constellation
k = log2(M); % Number of bits per symbol
n = 3e4; % Number of bits to process
nsamp = 1; % Oversampling rate

%% Signal Source
% Create a binary data stream as a column vector.
x = randint(n,1); % Random binary data stream

% Plot first 40 bits in a stem plot.
stem(x(1:40),'filled');
title('Random Bits');
xlabel('Bit Index'); ylabel('Binary Value');

1-6

Studying Components of a Communication System

2. Prepare to Modulate. The qammod function implements a 16-QAM
modulator. However, it expects to receive integers between 0 and 15 rather
than 4-tuples of bits. Therefore, you must preprocess the binary data stream x
before invoking qammod. In particular, you arrange each 4-tuple of values from
x across a row of a matrix, using the reshape function in MATLAB, and then
apply the bi2de function to convert each 4-tuple to a corresponding integer.
(The .' characters after the reshape command form the unconjugated array
transpose operator in MATLAB. For more information about this and the
similar ' operator, see “Reshaping a Matrix” in the MATLAB documentation
set.)

%% Bit-to-Symbol Mapping
% Convert the bits in x into k-bit symbols.
xsym = bi2de(reshape(x,k,length(x)/k).','left-msb');

%% Stem Plot of Symbols
% Plot first 10 symbols in a stem plot.
figure; % Create new figure window.
stem(xsym(1:10));
title('Random Symbols');
xlabel('Symbol Index'); ylabel('Integer Value');

1-7

1 Getting Started

3. Modulate Using 16-QAM. Having defined xsym as a column vector
containing integers between 0 and 15, you can use qammod to modulate xsym
using the baseband representation. Recall that M is 16, the alphabet size.

%% Modulation
% Modulate using 16-QAM.
y = qammod(xsym,M);

The result is a complex column vector whose values are in the 16-point
QAM signal constellation. A later step in this example will show what the
constellation looks like.

To learn more about modulation functions, see Chapter 8, “Modulation”. Also,
note that the qammod function does not apply any pulse shaping. To extend
this example to use pulse shaping, see “Pulse Shaping Using a Raised Cosine
Filter” on page 1-17. For an example that uses rectangular pulse shaping
with PSK modulation, see basicsimdemo.

4. Add White Gaussian Noise. Applying the awgn function to the
modulated signal adds white Gaussian noise to it. The ratio of bit energy to
noise power spectral density, Eb/N0, is arbitrarily set at 10 dB.

The expression to convert this value to the corresponding signal-to-noise ratio
(SNR) involves k, the number of bits per symbol (which is 4 for 16-QAM), and
nsamp, the oversampling factor (which is 1 in this example). The factor k is
used to convert Eb/N0 to an equivalent Es/N0, which is the ratio of symbol
energy to noise power spectral density. The factor nsamp is used to convert
Es/N0 in the symbol rate bandwidth to an SNR in the sampling bandwidth.

Note The definitions of ytx and yrx and the nsamp term in the definition of
snr are not significant in this example so far, but will make it easier to extend
the example later to use pulse shaping.

%% Transmitted Signal
ytx = y;

%% Channel
% Send signal over an AWGN channel.

1-8

matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/basicsimdemo.html%27%5D%29;

Studying Components of a Communication System

EbNo = 10; % In dB
snr = EbNo + 10*log10(k) - 10*log10(nsamp);
ynoisy = awgn(ytx,snr,'measured');

%% Received Signal
yrx = ynoisy;

To learn more about awgn and other channel functions, see Chapter 10,
“Channels”.

5. Create a Scatter Plot. Applying the scatterplot function to the
transmitted and received signals shows what the signal constellation looks
like and how the noise distorts the signal. In the plot, the horizontal axis is
the in-phase component of the signal and the vertical axis is the quadrature
component. The code below also uses the title, legend, and axis functions
in MATLAB to customize the plot.

%% Scatter Plot
% Create scatter plot of noisy signal and transmitted
% signal on the same axes.
h = scatterplot(yrx(1:nsamp*5e3),nsamp,0,'g.');
hold on;
scatterplot(ytx(1:5e3),1,0,'k*',h);
title('Received Signal');
legend('Received Signal','Signal Constellation');
axis([-5 5 -5 5]); % Set axis ranges.
hold off;

1-9

1 Getting Started

To learn more about scatterplot, see “Scatter Plots” on page 3-22.

6. Demodulate Using 16-QAM. Applying the qamdemod function to the
received signal demodulates it. The result is a column vector containing
integers between 0 and 15.

%% Demodulation
% Demodulate signal using 16-QAM.
zsym = qamdemod(yrx,M);

7. Convert the Integer-Valued Signal to a Binary Signal. The previous
step produced zsym, a vector of integers. To obtain an equivalent binary signal,
use the de2bi function to convert each integer to a corresponding binary
4-tuple along a row of a matrix. Then use the reshape function to arrange all
the bits in a single column vector rather than a four-column matrix.

%% Symbol-to-Bit Mapping
% Undo the bit-to-symbol mapping performed earlier.
z = de2bi(zsym,'left-msb'); % Convert integers to bits.
% Convert z from a matrix to a vector.
z = reshape(z.',prod(size(z)),1);

1-10

Studying Components of a Communication System

8. Compute the System’s BER. Applying the biterr function to the
original binary vector and to the binary vector from the demodulation step
above yields the number of bit errors and the bit error rate.

%% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
[number_of_errors,bit_error_rate] = biterr(x,z)

The statistics appear in the MATLAB Command Window. Your results might
vary because the example uses random numbers.

number_of_errors =

71

bit_error_rate =

0.0024

To learn more about biterr, see “Performance Results via Simulation” on
page 3-2.

Plotting Signal Constellations
The example in the previous section created a scatter plot from the modulated
signal. Although the plot showed the points in the QAM constellation, the
plot did not indicate which integers between 0 and 15 the modulator mapped
to a given constellation point. This section addresses the following problem:

Problem Plot a 16-QAM signal constellation with annotations that indicate
the mapping from integers to constellation points.

The solution uses the scatterplot function to create the plot and the text
function in MATLAB to create the annotations.

1-11

1 Getting Started

Solution of Problem
To view a completed M-file for this example, enter edit commdoc_const in the
MATLAB Command Window.

1. Find All Points in the 16-QAM Signal Constellation. Applying the
qammod function to a vector of integers between 0 and 15 results in an output
vector containing all points in the 16-QAM signal constellation.

M = 16; % Number of points in constellation
intg = [0:M-1].'; % Vector of integers between 0 and M-1
pt = qammod(intg,M); % Vector of all points in constellation

2. Plot the Signal Constellation. The scatterplot function plots the
points in pt.

% Plot the constellation.
scatterplot(pt);

1-12

Studying Components of a Communication System

3. Annotate the Plot to Indicate the Mapping. To annotate the plot to
show the relationship between intg and pt, use the text function to place
a number in the plot beside each constellation point. The coordinates of the
annotation are near the real and imaginary parts of the constellation point,
but slightly offset to avoid overlap. The text of the annotation comes from the
binary representation of intg. (The dec2bin function in MATLAB produces a
string of digit characters, while the de2bi function used in the last section
produces a vector of numbers.)

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(intg));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

Binary-Coded 16-QAM Signal Constellation

Examining the Plot
In the plot above, notice that 0001 and 0010 correspond to adjacent
constellation points on the left side of the diagram. Because these binary
representations differ by two bits, the adjacency indicates that qammod did
not use a Gray-coded signal constellation. (That is, if it were a Gray-coded
signal constellation, then the annotations for each pair of adjacent points
would differ by one bit.)

1-13

1 Getting Started

By contrast, the constellation below is one example of a Gray-coded 16-QAM
signal constellation. To arrive at this labeling of points, use the Gray-coded
sequence 00, 01, 11, 10 as the first two bits along each row and the last two
bits down each column.

Gray-Coded 16-QAM Signal Constellation

To create this new plot, first form a vector, mapping, that lists the integer
representations of the labels in the plot, reading down the columns from left
to right. Then change the definition of pt. The revised code is as follows.

%% Modified Plot, With Gray Coding
M = 16; % Number of points in constellation
intg = [0:M-1].';
mapping = [0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10].';
intgray = mapping(intg+1);
pt = qammod(intgray,M); % Vector of all points in constellation

scatterplot(pt); % Plot the constellation.

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(intg));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

1-14

Studying Components of a Communication System

The next section shows how to use this Gray-coded signal constellation in the
modulation example from “Modulating a Random Signal” on page 1-4.

Incorporating Gray Coding
Building on the modulation example in “Modulating a Random Signal”
on page 1-4 and the discussion about Gray coding in “Plotting Signal
Constellations” on page 1-11, this section addresses the following problem:

Problem Modify the modulation example so that it uses a Gray-coded signal
constellation.

The solution relies on matrix manipulation to achieve the goal.

Solution of Problem
The qammod and qamdemod functions use fixed signal constellations, so the way
to effect changes in the signal constellations is to modify the integers that
form the input to qammod and the output from qamdemod.

This solution modifies the code from “Modulating a Random Signal” on page
1-4. To view the original code in an editor window, enter the following
command in the MATLAB Command Window.

edit commdoc_mod

To view a completed M-file for this example, enter edit commdoc_gray in the
MATLAB Command Window.

1. Modify the Bit-to-Symbol Mapping. In the M-code from “Modulating
a Random Signal” on page 1-4, replace the Bit-to-Symbol Mapping section
with the following.

%% Bit-to-Symbol Mapping
% Convert the bits in x into k-bit symbols, using
% Gray coding.

% A. Define a vector for mapping bits to symbols using
% Gray coding. The vector is specific to the arrangement

1-15

1 Getting Started

% of points in a 16-QAM constellation.
mapping = [0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10].';

% B. Do ordinary binary-to-decimal mapping.
xsym = bi2de(reshape(x,k,length(x)/k).','left-msb');

% C. Map from binary coding to Gray coding.
xsym = mapping(xsym+1);

The mapping vector is the same one used in “Examining the Plot” on page
1-13 earlier. The mapping from binary coding to Gray coding, in the last line
above, uses vector indexing to transform xsym using values in mapping. For
example, a value of 2 in xsym is transformed into the new value mapping(2+1)
= mapping(3) = 3.

2. Modify the Symbol-to-Bit Mapping. In the M-code from “Modulating
a Random Signal” on page 1-4, replace the Symbol-to-Bit Mapping section
with the following.

%% Symbol-to-Bit Mapping
% Undo the bit-to-symbol mapping performed earlier.

% A. Define a vector that inverts the mapping operation.
[dummy demapping] = sort(mapping);
% Initially, demapping has values between 1 and M.
% Subtract 1 to obtain values between 0 and M-1.
demapping = demapping - 1;

% B. Map between Gray and binary coding.
zsym = demapping(zsym+1);

% C. Do ordinary decimal-to-binary mapping.
z = de2bi(zsym,'left-msb');
% Convert z from a matrix to a vector.
z = reshape(z.',prod(size(z)),1);

The demapping vector represents an inverse mapping relative to the mapping
vector, in that mapping(demapping+1) is the sorted list of integers between 0
and 15. (The +1 is needed because MATLAB uses 1-based indexing of vectors,
whereas the smallest value in demapping is 0.)

1-16

Studying Components of a Communication System

Note In this particular case, mapping and demapping are identical, but for
other Gray-coded signal constellations the two vectors would typically differ
from each other.

Checking that the Mapping Works
The mapping given above might not be intuitive until you try a few examples.
The diagram below shows how the transformations in the solution above,
along with the qammod and qamdemod functions, affect a value of 2 in the
original decimal-valued signal.

2
mapping(xsym+1) mapping(3)

= 3
qammod

qamdemoddemapping(zsym+1)demapping(4)
= 2

3

Recall from “Examining the Plot” on page 1-13 that the desired Gray coding
maps 2 to the constellation point in the lower left corner, as the diagram below
shows. To check that demapping(4) is 2, execute the code example as modified
above and then enter demapping(4) in the MATLAB Command Window.

Pulse Shaping Using a Raised Cosine Filter
This section further extends the example by addressing the following problem:

Problem Modify the Gray-coded modulation example so that it uses a pair
of square root raised cosine filters to perform pulse shaping and matched
filtering at the transmitter and receiver, respectively.

The solution uses the rcosine function to design the square root raised cosine
filter and the rcosflt function to filter the signals. Alternatively, you can use

1-17

1 Getting Started

the rcosflt function to perform both tasks in one command; see “Filtering
with Raised Cosine Filters” on page 9-7 or the rcosdemo demonstration for
more details.

Solution of Problem
This solution modifies the code from “Incorporating Gray Coding” on page
1-15. To view the original code in an editor window, enter the following
command in the MATLAB Command Window.

edit commdoc_gray

To view a completed M-file for this example, enter edit commdoc_rrc in the
MATLAB Command Window.

1. Define Filter-Related Parameters. In the Setup section of the example
from “Incorporating Gray Coding” on page 1-15, replace the definition of the
oversampling rate, nsamp, with the following.

nsamp = 4; % Oversampling rate

Also, define other key parameters related to the filter by inserting the
following after the Modulation section of the example and before the
Transmitted signal section.

%% Filter Definition
% Define filter-related parameters.
filtorder = 40; % Filter order
delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rolloff = 0.25; % Rolloff factor of filter

2. Create a Square Root Raised Cosine Filter. To design the filter and
plot its impulse response, insert the following commands after the commands
you added in the previous step.

% Create a square root raised cosine filter.
rrcfilter = rcosine(1,nsamp,'fir/sqrt',rolloff,delay);

% Plot impulse response.
figure; impz(rrcfilter,1);

1-18

matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/rcosdemo.html%27%5D%29

Studying Components of a Communication System

3. Filter the Modulated Signal. To filter the modulated signal, replace
the Transmitted Signal section with following.

%% Transmitted Signal
% Upsample and apply square root raised cosine filter.
ytx = rcosflt(y,1,nsamp,'filter',rrcfilter);

% Create eye diagram for part of filtered signal.
eyediagram(ytx(1:2000),nsamp*2);

The rcosflt command internally upsamples the modulated signal, y, by a
factor of nsamp, pads the upsampled signal with zeros at the end to flush the
filter at the end of the filtering operation, and then applies the filter.

The eyediagram command creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note
that the signal shows significant intersymbol interference (ISI) because the
filter is a square root raised cosine filter, not a full raised cosine filter.

1-19

1 Getting Started

To learn more about eyediagram, see “Eye Diagrams” on page 3-19.

4. Filter the Received Signal. To filter the received signal, replace the
Received Signal section with the following.

%% Received Signal
% Filter received signal using square root raised cosine filter.
yrx = rcosflt(ynoisy,1,nsamp,'Fs/filter',rrcfilter);
yrx = downsample(yrx,nsamp); % Downsample.
yrx = yrx(2*delay+1:end-2*delay); % Account for delay.

These commands apply the same square root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of nsamp.

The last command removes the first 2*delay symbols and the last 2*delay
symbols in the downsampled signal because they represent the cumulative
delay of the two filtering operations. Now yrx, which is the input to the
demodulator, and y, which is the output from the modulator, have the same
vector size. In the part of the example that computes the bit error rate, it is
important to compare two vectors that have the same size.

1-20

Studying Components of a Communication System

5. Adjust the Scatter Plot. For variety in this example, make the scatter
plot show the received signal before and after the filtering operation. To do
this, replace the Scatter Plot section of the example with the following.

%% Scatter Plot
% Create scatter plot of received signal before and
% after filtering.
h = scatterplot(sqrt(nsamp)*ynoisy(1:nsamp*5e3),nsamp,0,'g.');
hold on;
scatterplot(yrx(1:5e3),1,0,'kx',h);
title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');
axis([-5 5 -5 5]); % Set axis ranges.

Notice that the first scatterplot command scales ynoisy by sqrt(nsamp)
when plotting. This is because the filtering operation changes the signal’s
power.

Using a Convolutional Code
This section further extends the example by addressing the following problem:

1-21

1 Getting Started

Problem Modify the previous example so that it includes convolutional
coding and decoding, given the constraint lengths and generator polynomials
of the convolutional code.

The solution uses the convenc and vitdec functions to perform encoding
and decoding, respectively. It also uses the poly2trellis function to define
a trellis that represents a convolutional encoder. To learn more about these
functions, see “Convolutional Coding” on page 6-30.

See also vitsimdemo for an example of convolutional coding and decoding.

Solution of Problem
This solution modifies the code from “Pulse Shaping Using a Raised Cosine
Filter” on page 1-17. To view the original code in an editor window, enter the
following command in the MATLAB Command Window.

edit commdoc_rrc

To view a completed M-file for this example, enter edit commdoc_code in the
MATLAB Command Window.

1. Increase the Number of Symbols. Convolutional coding at this value
of EbNo reduces the BER markedly. As a result, accumulating enough errors
to compute a reliable BER requires you to process more symbols. In the Setup
section, replace the definition of the number of bits, n, with the following.

n = 5e5; % Number of bits to process

Note The larger number of bits in this example causes it to take a noticeably
longer time to run compared to the examples in previous sections.

2. Encode the Binary Data. To encode the binary data before mapping it to
integers for modulation, insert the following after the Signal Source section
of the example and before the Bit-to-Symbol Mapping section.

1-22

matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/vitsimdemo.html%27%5D%29

Studying Components of a Communication System

%% Encoder
% Define a convolutional coding trellis and use it
% to encode the binary data.
t = poly2trellis([5 4],[23 35 0; 0 5 13]); % Trellis
code = convenc(x,t); % Encode.
coderate = 2/3;

The poly2trellis command defines the trellis that represents the
convolutional code that convenc uses for encoding the binary vector, x. The
two input arguments in the poly2trellis command indicate the constraint
length and generator polynomials, respectively, of the code. A diagram
showing this encoder is in “Example: A Rate-2/3 Feedforward Encoder” on
page 6-40.

3. Apply the Bit-to-Symbol Mapping to the Encoded Signal. The
bit-to-symbol mapping must apply to the encoded signal, code, not the original
uncoded data. Replace the first definition of xsym (within the Bit-to-Symbol
Mapping section) with the following.

% B. Do ordinary binary-to-decimal mapping.
xsym = bi2de(reshape(code,k,length(code)/k).','left-msb');

Recall that k is 4, the number of bits per symbol in 16-QAM.

4. Account for Code Rate When Defining SNR. Converting from Eb/N0 to
the signal-to-noise ratio requires you to account for the number of information
bits per symbol. Previously, each symbol corresponded to k bits. Now, each
symbol corresponds to k*coderate information bits. More concretely, three
symbols correspond to 12 coded bits in 16-QAM, which correspond to 8
uncoded (information) bits, so the ratio of symbols to information bits is 8/3
= 4*(2/3) = k*coderate.

Therefore, change the definition of snr (within the Channel section) to the
following.

snr = EbNo + 10*log10(k*coderate)-10*log10(nsamp);

5. Decode the Convolutional Code. To decode the convolutional code
before computing the error rate, insert the following after the entire
Symbol-to-Bit Mapping section and just before the BER Computation section.

1-23

1 Getting Started

%% Decoder
% Decode the convolutional code.
tb = 16; % Traceback length for decoding
z = vitdec(z,t,tb,'cont','hard'); % Decode.

The syntax for the vitdec function instructs it to use hard decisions. The
'cont' argument instructs it to use a mode designed for maintaining continuity
when you invoke the function repeatedly (as in a loop). Although this example
does not use a loop, the 'cont' mode is used for the purpose of illustrating how
to compensate for the delay in this decoding operation. The delay is discussed
further in “More About Delays” on page 1-24.

6. Account for Delay When Computing BER. The continuous operation
mode of the Viterbi decoder incurs a delay whose duration in bits equals the
traceback length, tb, times the number of input streams to the encoder. For
this rate 2/3 code, the encoder has two input streams, so the delay is 2*tb bits.

As a result, the first 2*tb bits in the decoded vector, z, are just zeros. When
computing the bit error rate, you should ignore the first 2*tb bits in z and the
last 2*tb bits in the original vector, x. If you do not compensate for the delay,
then the BER computation is meaningless because it compares two vectors
that do not truly correspond to each other.

Therefore, replace the BER Computation section with the following.

%% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate. Take the decoding delay into account.
decdelay = 2*tb; % Decoder delay, in bits
[number_of_errors,bit_error_rate] = ...

biterr(x(1:end-decdelay),z(decdelay+1:end))

More About Delays
The decoding operation in this example incurs a delay, which means that
the output of the decoder lags the input. Timing information does not
appear explicitly in the example, and the duration of the delay depends
on the specific operations being performed. Delays occur in various
communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find

1-24

Studying Components of a Communication System

out the duration of the delay caused by specific functions or operations, refer
to the specific documentation for those functions or operations. For example:

• The vitdec reference page

• “Delays of Convolutional Interleavers” on page 7-9

• “Delays from Equalization” on page 11-21

• “Example: Compensating for Group Delays When Analyzing Data” on
page 9-3

• “Fading Channels” on page 10-6

The “Effect of Delays on Recovery of Convolutionally Interleaved Data” on
page 7-10 discussion also includes two typical ways to compensate for delays.

1-25

1 Getting Started

Simulating a Communication System
The examples so far have performed tasks associated with various components
of a communication system. In some cases, you might need to create a more
sophisticated simulation that uses one or more of these techniques:

• Looping over a set of values of a specific parameter, such as Eb/N0, the
alphabet size, or the oversampling rate, so you can see the parameter’s
effect on the system

• Processing data in multiple smaller sets rather than in one large set, to
reduce the memory requirement

• Dynamically determining how much data to process to get reliable results,
instead of trying to guess at the beginning

This section discusses these issues and provides examples of constructs that
you can use in your simulations of communication systems. The topics are as
follows:

• “Using BERTool to Run Simulations” on page 1-26

• “Varying Parameters and Managing a Set of Simulations” on page 1-33

Using BERTool to Run Simulations
The Communications Toolbox includes a graphical user interface (GUI) called
BERTool that is designed to solve problems like the following:

Problem Modify the modulation example in “Incorporating Gray Coding” on
page 1-15 so that it computes the BER for integer values of EbNo between 0
and 7. Plot the BER as a function of EbNo using a logarithmic scale for the
vertical axis.

BERTool solves the problem by managing a series of simulations with
different values of Eb/N0, collecting the results, and creating a plot. You
provide the core of the simulation, which in this case is a minor modification
of the example in “Incorporating Gray Coding” on page 1-15.

1-26

Simulating a Communication System

This section introduces BERTool as well as some simulation-related issues,
in these topics:

• “Solution of Problem” on page 1-27

• “Comparing with Theoretical Results” on page 1-30

• “More About the Simulation Structure” on page 1-32

However, this section is not a comprehensive description of BERTool; for
more information about BERTool, see Chapter 4, “BERTool: A Bit Error Rate
Analysis GUI”.

Solution of Problem
This solution uses code from “Incorporating Gray Coding” on page 1-15 as
well as code from a template file that is tailored for use with BERTool. To
view the original code in an editor window, enter these commands in the
MATLAB Command Window.

edit commdoc_gray
edit bertooltemplate

To view a completed M-file for this example, enter edit commdoc_bertool
in the MATLAB Command Window.

1. Save Template in Your Own Directory. Navigate to a directory
where you want to save your own files. Save the BERTool template
(bertooltemplate) under the filename my_commdoc_bertool to avoid
overwriting the original template.

Also, change the first line of my_commdoc_bertool, which is the function
declaration, to use the new filename.

function [ber, numBits] = my_commdoc_bertool(EbNo, maxNumErrs, maxNumBits)

2. Copy Setup Code Into Template. In the my_commdoc_bertool file,
replace

% --- Set up parameters. ---
% --- INSERT YOUR CODE HERE.

1-27

1 Getting Started

with the following setup code adapted from the example in “Incorporating
Gray Coding” on page 1-15.

% Setup
% Define parameters.
M = 16; % Size of signal constellation
k = log2(M); % Number of bits per symbol
n = 1000; % Number of bits to process
nsamp = 1; % Oversampling rate

To save time in the simulation, the code above changes the value of n from its
original value. At small values of EbNo, it is not necessary to process tens of
thousands of symbols to compute an accurate BER; at large values of EbNo,
the loop structure in the template file (described later) causes the simulation
to include at least 100 errors even if it must iterate several times through the
loop to accumulate that many errors.

3. Copy Simulation Code Into Template. In the my_commdoc_bertool
file, replace

% --- Proceed with simulation.
% --- Be sure to update totErr and numBits.
% --- INSERT YOUR CODE HERE.

with the rest of the code (that is, the code following the Setup section) from
the example in “Incorporating Gray Coding” on page 1-15.

Also, type a semicolon at the end of the last line of the pasted code (the biterr
command) to suppress screen output when BERTool runs the simulation.

6. Update numBits and totErr. After the pasted code from the last step
and before the end statement from the template, insert the following code.

%% Update totErr and numBits.
totErr = totErr + number_of_errors;
numBits = numBits + n;

These commands enable the function to keep track of the number of bits
processed and the number of errors detected.

1-28

Simulating a Communication System

5. Suppress Earlier Plots. Running multiple iterations would result in a
large number of plots, which this example suppresses for simplicity. In the
my_commdoc_bertool file, remove the lines of code that use these functions:
stem, title, xlabel, ylabel, figure, scatterplot, hold, legend, and axis.

6. Omit Direct Assignment of EbNo. When BERTool invokes a simulation
function, it specifies a value of EbNo. The my_commdoc_bertool function must
not directly assign EbNo. Therefore, remove or comment out the line that you
pasted into my_commdoc_bertool (within the Channel section) that assigns
EbNo directly.

% EbNo = 10; % In dB % COMMENT OUT FOR BERTOOL

7. Save Simulation Function. The simulation function,
my_commdoc_bertool, is complete. Save the file so that BERTool can use it.

8. Open BERTool and Enter Parameters. To open BERTool, enter

bertool

in the MATLAB Command Window. Then click the Monte Carlo tab and
enter parameters as shown below.

1-29

1 Getting Started

These parameters tell BERTool to run your simulation function,
my_commdoc_bertool, for each value of EbNo in the vector 2:10 (that is, the
vector [2 3 4 5 6 7 8 9 10]). Each time the simulation runs, it continues
processing data until it detects 100 bit errors or processes a total of 1e8 bits,
whichever occurs first.

9. Use BERTool to Simulate and Plot. Click the Run button on BERTool.
BERTool begins the series of simulations and eventually reports the results
to you in a plot like the one below.

To compare these BER results with theoretical results, leave BERTool open
and use the procedure below.

Comparing with Theoretical Results
To check whether the results from the solution above are correct, use BERTool
again. This time, use its Theoretical panel to plot theoretical BER results in
the same window as the simulation results from before. Follow this procedure:

1 In the BERTool GUI, click the Theoretical tab and enter parameters
as shown below.

1-30

Simulating a Communication System

The parameters tell BERTool to compute theoretical BER results for
16-QAM over an AWGN channel, for Eb/N0 values in the vector 2:10.

2 Click the Plot button. The resulting plot shows a solid curve for the
theoretical BER results and plotting markers for the earlier simulation
results.

Notice that the plotting markers are close to the theoretical curve. It is
relevant that the simulation code used a Gray-coded signal constellation,
unlike the first modulation example of this chapter (in “Modulating a
Random Signal” on page 1-4). The theoretical performance results assume
a Gray-coded signal constellation.

1-31

1 Getting Started

To continue exploring BERTool, you can select the Fit check box to fit a curve
to the simulation data, or set Confidence Level to a numerical value to
include confidence intervals in the plot. See also Chapter 4, “BERTool: A Bit
Error Rate Analysis GUI” for more about BERTool.

More About the Simulation Structure
Looking more closely at the simulation function in this example, you might
make a few observations about its structure, and particularly about the loop
marked with the comments

% Simulate until number of errors exceeds maxNumErrs
% or number of bits processed exceeds maxNumBits.

The loop structure means that the simulation processes some data,
accumulates bit errors, and then decides whether to repeat the process with
another set of data. The advantage of this approach is that you do not have to
guess in advance how much data you need to process to obtain an accurate
BER estimate. This is very useful when your series of simulations spans a
large Eb/N0 range because simulations at higher values of Eb/N0 require more
data processing to maintain the same level of accuracy in the BER estimate.
Another advantage of this approach is that you avoid memory problems
caused by excessively large data sets.

However, a potential complication from dividing large data sets into a series
of smaller data sets that you process in a loop is that you might need to take
steps to ensure the continuity of computations from one iteration to the
next. For example, continuity is important when the simulation includes
convolutional decoding, convolutional interleaving/deinterleaving, continuous
phase modulation, fading channels, and equalization. To learn more about
how to maintain continuity, see the examples in

• The vitdec reference page

• The viterbisim demonstration function (designed to be used with BERTool)

• The muxdeintrlv reference page

• The mskdemod reference page

• “Fading Channels” on page 10-6

1-32

matlab:edit%20viterbisim;

Simulating a Communication System

• “Equalizing Using a Loop” on page 11-22

• “Equalizing in Continuous Operation Mode” on page 11-29

If you divide your data set into a series of very small data sets, then the large
number of function calls might make the simulation slow. You can use the
Profiler tool in MATLAB to help you make your code faster.

Varying Parameters and Managing a Set of
Simulations
A common task in analyzing a communication system is to vary a parameter,
possibly a parameter other than Eb/N0, and find out how the system responds.
This section addresses the following problem:

Problem Modify the modulation example in “Modulating a Random Signal”
on page 1-4 so that it computes the BER for alphabet sizes (M) of 4, 8, 16, and
32 and for integer values of EbNo between 0 and 7. For each value of M, plot
the BER as a function of EbNo using a logarithmic scale for the vertical axis.

The earlier section (“Modulating a Random Signal” on page 1-4) presented
a model of the system that computes the BER for specific values of M and
EbNo. Therefore, the only remaining task is to vary M and EbNo and collect
multiple error rates. For simplicity, this solution uses the same number of
bits for each value of M and EbNo, unlike the example in “Using BERTool
to Run Simulations” on page 1-26.

Solution of Problem
This solution modifies the code from “Modulating a Random Signal” on page
1-4 by introducing and exploiting a nested loop structure. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_mod

To view a completed M-file for this example, enter edit commdoc_mcurves
in the MATLAB Command Window.

1-33

1 Getting Started

1. Define the Set of Values for the Parameter. At the beginning of
the script, introduce variables that list all the values of M and EbNo that the
problem requires. Also, preallocate space for error statistics corresponding
to each combination of M and EbNo.

%% Ranges of Variables
Mvec = [4 8 16 32]; % Values of M to consider
EbNovec = [0:7]; % Values of EbNo to consider

%% Preallocate space for results.
number_of_errors = zeros(length(Mvec),length(EbNovec));
bit_error_rate = zeros(length(Mvec),length(EbNovec));

2. Introduce a Loop Structure. After Mvec and EbNovec are defined and
space is preallocated for statistics, all the subsequent commands can go inside
a loop, as illustrated below.

%% Simulation loops
for idxM = 1:length(Mvec)

for idxEbNo = 1:length(EbNovec)

% OTHER COMMANDS

end % End of loop over EbNo values
end % End of loop over M values

3. Inside the Loop, Parameterize as Appropriate. The M-code from
“Incorporating Gray Coding” on page 1-15 specifies fixed values of M and EbNo,
while this problem requires using a different value for each iteration of the
loop. Therefore, change the definitions of M (within the Setup section) and
EbNo (within the Channel section) as follows.

M = Mvec(idxM); % Size of signal constellation

EbNo = EbNovec(idxEbNo); % In dB

Also, the original M-code returns scalar values for the BER and number of
errors, while it makes sense in this case to save the whole array of error
statistics instead of overwriting the variables in each iteration. Therefore,
replace the BER Computation section with the following.

1-34

Simulating a Communication System

%% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
[number_of_errors(idxM,idxEbNo),bit_error_rate(idxM,idxEbNo)] = ...

biterr(x,z);

Note An earlier step preallocated space for the matrices number_of_errors
and bit_error_rate. While not strictly necessary, this is a better MATLAB
programming habit than expanding the matrices’ size in each iteration. To
learn more, see “Preallocating Arrays” in the MATLAB documentation set.

4. Suppress Earlier Plots. Running multiple iterations would result in a
large number of plots, which this example suppresses for simplicity. Remove
the lines of code that use these functions:stem, title, xlabel, ylabel, figure,
scatterplot, hold, legend, and axis.

5. Create BER Plot. The semilogy function in MATLAB creates a plot with
a logarithmic scale in the vertical axis. The following commands, placed just
before the end of the loop over M values, create the desired BER plot curve by
curve during the simulation.

%% Plot a Curve.
markerchoice = '.xo*';
plotsym = [markerchoice(idxM) '-']; % Plotting style for this curve
semilogy(EbNovec,bit_error_rate(idxM,:),plotsym); % Plot one curve.
drawnow; % Update the plot instead of waiting until the end.
hold on; % Make sure next iteration does not remove this curve.

You might also want to customize the plot at the end by adding this code
after the end of both loops.

%% Complete the plot.
title('Performance of M-QAM for Varying M');
xlabel('EbNo (dB)'); ylabel('BER');
legend('M = 4','M = 8','M = 16','M = 32',...

'Location','SouthWest');

6. Run the Entire Script. The script creates a plot like the one below.

1-35

1 Getting Started

1-36

Learning More

Learning More
You can learn more about the Communications Toolbox from the following
sources.

Online Help
To find online documentation, select Full Product Family Help from the
Help menu in the MATLAB desktop. This launches the Help browser. For
a more detailed explanation of any of the topics covered in this chapter, see
the documentation listed under Communications Toolbox in the left pane
of the Help browser.

Besides this chapter, the online documentation set contains these components:

• A chapter about each of the core areas of functionality of the toolbox (such
as error-control coding, modulation, and equalizers)

• A reference page for each function in the toolbox, indexed alphabetically
and by category

You can also use the online index of examples to find code examples that are
relevant for the tasks you want to do.

Demos
To see more Communications Toolbox examples, select Demos from
the Help menu in the MATLAB desktop. This opens the Help browser
to the demonstration area. Double-click Toolboxes and then select
Communications to list the available demos.

The MathWorks Online
To read the documentation for the Communications Toolbox on the MathWorks
Web site, point your Web browser to

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

Other resources for the Communications Toolbox are available at

http://www.mathworks.com/products/communications/

1-37

1 Getting Started

1-38

2

Signal Sources

Every communication system has one or more signal sources. This chapter
describes how to use the Communications Toolbox to generate random
signals, which are useful for simulating noise, errors, or signal sources. The
sections are as follows.

“White Gaussian Noise” (p. 2-2) Using wgn to generate white
Gaussian noise

“Random Symbols” (p. 2-3) Using randsrc to generate random
symbols

“Random Integers” (p. 2-4) Using randint to generate uniformly
distributed random integers

“Random Bit Error Patterns” (p. 2-5) Using randerr to generate random
bit error patterns, as in a model of
channel errors

For more general random number generators, see the online reference pages
for the built-in MATLAB functions rand and randn.

2 Signal Sources

White Gaussian Noise
The wgn function generates random matrices using a white Gaussian noise
distribution. You specify the power of the noise in either dBW (decibels
relative to a watt), dBm, or linear units. You can generate either real or
complex noise.

For example, the command below generates a column vector of length 50
containing real white Gaussian noise whose power is 2 dBW. The function
assumes that the load impedance is 1 ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 Watts, across a
load of 60 ohms, use either of the commands below. Notice that the ordering of
the string inputs does not matter.

y2 = wgn(50,1,2,60,'complex','linear');
y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the
awgn function. See “AWGN Channel” on page 10-3 for more information.

2-2

Random Symbols

Random Symbols
The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you
specify. A special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries
are independently chosen and uniformly distributed in the set {1,3,5}. (Your
results might vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])

a =

3 5 1 5
1 5 3 3
1 3 3 1
1 1 3 5
3 1 1 3

If you want 1 to be twice as likely to occur as either 3 or 5, then use the
command below to prescribe the skewed distribution. Notice that the third
input argument has two rows, one of which indicates the possible values of b
and the other indicates the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

b =

3 3 5 1
1 1 1 1
1 5 1 1
1 3 1 3
3 1 3 1

2-3

2 Signal Sources

Random Integers
The randint function generates random integer matrices whose entries are in
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing
random integers between 2 and 10.

c = randint(5,4,[2,10])

c =

2 4 4 6
4 5 10 5
9 7 10 8
5 5 2 3

10 3 4 10

If your desired range is [0,10] instead of [2,10] then you can use either of
the commands below. They produce different numerical results, but use the
same distribution.

d = randint(5,4,[0,10]);
e = randint(5,4,11);

2-4

Random Bit Error Patterns

Random Bit Error Patterns
The randerr function generates matrices whose entries are either 0 or 1.
However, its options are rather different from those of randint, because
randerr is meant for testing error-control coding. For example, the command
below generates a 5-by-4 binary matrix having the property that each row
contains exactly one 1.

f = randerr(5,4)

f =

0 0 1 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0

You might use such a command to perturb a binary code that consists of five
four-bit codewords. Adding the random matrix f to your code matrix (modulo
2) would introduce exactly one error into each codeword.

On the other hand, if you want to perturb each codeword by introducing
one error with probability 0.4 and two errors with probability 0.6, then the
command below should replace the one above.

% Each row has one '1' with probability 0.4, otherwise two '1's
g = randerr(5,4,[1,2; 0.4,0.6])

g =

0 1 1 0
0 1 0 0
0 0 1 1
1 0 1 0
0 1 1 0

2-5

2 Signal Sources

Note The probability matrix that is the third argument of randerr affects
only the number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element
column vector using any of the commands below. The three commands
produce different numerical outputs, but use the same distribution. Notice
that the third input arguments vary according to each function’s particular
way of specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1.
binarymatrix2 = randint(100,1,2); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1

2-6

3

Performance Evaluation

Simulating a communication system often involves analyzing its response to
the noise inherent in real-world components, studying its behavior using
graphical means, and determining whether the resulting performance meets
standards of acceptability. The sections in this chapter are as follows.

“Performance Results via
Simulation” (p. 3-2)

Computing error statistics using the
Monte Carlo technique

“Performance Results via the
Semianalytic Technique” (p. 3-5)

Computing error statistics via the
semianalytic technique

“Theoretical Performance Results”
(p. 3-9)

Computing theoretical error
statistics using published formulas

“Error Rate Plots” (p. 3-13) Plotting error statistics and fitting a
curve to empirical error statistics

“Eye Diagrams” (p. 3-19) Plotting eye diagrams

“Scatter Plots” (p. 3-22) Generating scatter plots

“Selected Bibliography for
Performance Evaluation” (p.
3-25)

Works containing background
information about performance
evaluation

Because error analysis is often a component of communication system
simulation, other portions of this guide provide additional examples.

3 Performance Evaluation

Performance Results via Simulation
One way to compute the bit error rate or symbol error rate for a
communication system is to simulate the transmission of data messages and
compare all messages before and after transmission. The simulation of the
communication system components using functions in the Communications
Toolbox is covered in other parts of this guide. This section describes how
to perform the comparison of the data messages that enter and leave the
simulation. An additional example of computing performance results via
simulation is in “Curve Fitting for Error Rate Plots” on page 3-13 in the
discussion of curve fitting.

Using Simulated Data to Compute Bit and Symbol
Error Rates
The biterr function compares two sets of data and computes the number of
bit errors and the bit error rate. The symerr function compares two sets of
data and computes the number of symbol errors and the symbol error rate. An
error is a discrepancy between corresponding points in the two sets of data.

Of the two sets of data, typically one represents messages entering a
transmitter and the other represents recovered messages leaving a receiver.
You might also compare data entering and leaving other parts of your
communication system: for example, data entering an encoder and data
leaving a decoder.

If your communication system uses several bits to represent one symbol, then
counting bit errors is different from counting symbol errors. In either the bit-
or symbol-counting case, the error rate is the number of errors divided by the
total number (of bits or symbols) transmitted.

Note To ensure an accurate error rate, you should typically simulate enough
data to produce at least 100 errors.

If the error rate is very small (for example, 10-6 or smaller), then the
semianalytic technique might compute the result more quickly than a

3-2

Performance Results via Simulation

simulation-only approach. See “Performance Results via the Semianalytic
Technique” on page 3-5 for more information on how to use this technique.

Example: Computing Error Rates
The script below uses the symerr function to compute the symbol error rates
for a noisy linear block code. After artificially adding noise to the encoded
message, it compares the resulting noisy code to the original code. Then it
decodes and compares the decoded message to the original one.

m = 3; n = 2^m-1; k = n-m; % Prepare to use Hamming code.
msg = randint(k*200,1,2); % 200 messages of k bits each
code = encode(msg,n,k,'hamming');
codenoisy = rem(code+(rand(n*200,1)>.95),2); % Add noise.
% Decode and correct some errors.
newmsg = decode(codenoisy,n,k,'hamming');
% Compute and display symbol error rates.
[codenum,coderate] = symerr(code,codenoisy);
[msgnum,msgrate] = symerr(msg,newmsg);
disp(['Error rate in the received code: ',num2str(coderate)])
disp(['Error rate after decoding: ',num2str(msgrate)])

The output is below. The error rate decreases after decoding because the
Hamming decoder corrects some of the errors. Your results might vary
because the example uses random numbers.

Error rate in the received code: 0.054286
Error rate after decoding: 0.03

Comparison of Symbol Error Rate and Bit Error Rate
In the example above, the symbol errors and bit errors are the same because
each symbol is a bit. The commands below illustrate the difference between
symbol errors and bit errors in other situations.

a = [1 2 3]'; b = [1 4 4]';
format rat % Display fractions instead of decimals.
[snum,srate] = symerr(a,b)
[bnum,brate] = biterr(a,b)

The output is below.

3-3

3 Performance Evaluation

snum =

2

srate =

2/3

bnum =

5

brate =

5/9

bnum is 5 because the second entries differ in two bits and the third entries
differ in three bits. brate is 5/9 because the total number of bits is nine. The
total number of bits is, by definition, the number of entries in a or b times the
maximum number of bits among all entries of a and b.

3-4

Performance Results via the Semianalytic Technique

Performance Results via the Semianalytic Technique
The technique described in “Performance Results via Simulation” on page
3-2 works well for a large variety of communication systems, but can be
prohibitively time-consuming if the system’s error rate is very small (for
example, 10-6 or smaller). This section describes how to use the semianalytic
technique as an alternative way to compute error rates. For certain types of
systems, the semianalytic technique can produce results much more quickly
than a nonanalytic method that uses only simulated data.

The semianalytic technique uses a combination of simulation and analysis
to determine the error rate of a communication system. The semianalytic
function in the Communications Toolbox helps you implement the
semianalytic technique by performing some of the analysis.

The topics in this section are

• “When to Use the Semianalytic Technique” on page 3-5

• “Procedure for the Semianalytic Technique” on page 3-6

• “Example: Using the Semianalytic Technique” on page 3-7

For more background information on the semianalytic technique, refer to [3] .

When to Use the Semianalytic Technique
The semianalytic technique works well for certain types of communication
systems, but not for others. The semianalytic technique is applicable if a
system has all of these characteristics:

• Any effects of multipath fading, quantization, and amplifier nonlinearities
must precede the effects of noise in the actual channel being modeled.

• The receiver is perfectly synchronized with the carrier, and timing jitter is
negligible. Because phase noise and timing jitter are slow processes, they
reduce the applicability of the semianalytic technique to a communication
system.

• The noiseless simulation has no errors in the received signal constellation.
Distortions from sources other than noise should be mild enough to keep
each signal point in its correct decision region. If this is not the case, then

3-5

3 Performance Evaluation

the calculated BER is too low. However, this assumption is reasonable for
most viable communication systems.

Furthermore, the semianalytic function assumes that the noise in the
actual channel being modeled is Gaussian. For details on how to adapt
the semianalytic technique for non-Gaussian noise, see the discussion of
generalized exponential distributions in [3].

Procedure for the Semianalytic Technique
The procedure below describes how you would typically implement the
semianalytic technique using the semianalytic function:

1 Generate a message signal containing at least ML symbols, where M is
the alphabet size of the modulation and L is the length of the impulse
response of the channel, in symbols. A common approach is to start with an
augmented binary pseudonoise (PN) sequence of total length (log2M)M

L. An
augmented PN sequence is a PN sequence with an extra zero appended,
which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal using baseband modulation.
Supported modulation types are listed on the reference page for
semianalytic.

3 Filter the modulated signal with a transmit filter. This filter is often a
square-root raised cosine filter, but you can also use a Butterworth, Bessel,
Chebyshev type 1 or 2, elliptic, or more general FIR or IIR filter. Store the
result of this step as txsig for later use.

4 Run the filtered signal through a noiseless channel. This channel can
include multipath fading effects, phase shifts, amplifier nonlinearities,
quantization, and additional filtering, but it must not include noise. Store
the result of this step as rxsig for later use.

5 Invoke the semianalytic function using the txsig and rxsig data from
earlier steps. Specify a receive filter as a pair of input arguments, unless
you want to use the function’s default filter. The function filters rxsig
and then determines the error probability of each received signal point by
analytically applying the Gaussian noise distribution to each point. The
function averages the error probabilities over the entire received signal to
determine the overall error probability. If the error probability calculated
in this way is a symbol error probability, then the function converts it to

3-6

Performance Results via the Semianalytic Technique

a bit error rate, typically by assuming Gray coding. The function returns
the bit error rate (or, in the case of DQPSK modulation, an upper bound
on the bit error rate).

Example: Using the Semianalytic Technique
The example below illustrates the procedure described above, using 16-QAM
modulation. It also compares the error rates obtained from the semianalytic
technique with the theoretical error rates obtained from published formulas
and computed using the berawgn function. The resulting plot shows that
the error rates obtained using the two methods are nearly identical. The
discrepancies between the theoretical and computed error rates are largely
due to the phase offset in this example’s channel model.

% Step 1. Generate message signal of length >= M^L.
M = 16; % Alphabet size of modulation
L = 1; % Length of impulse response of channel
msg = [0:M-1 0]; % M-ary message sequence of length > M^L

% Step 2. Modulate the message signal using baseband modulation.
modsig = qammod(msg,M); % Use 16-QAM.
Nsamp = 16;
modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.
txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.
rxsig = txsig*exp(j*pi/180); % Static phase offset of 1 degree
% Step 5. Use the semianalytic function.
% Specify the receive filter as a pair of input arguments.
% In this case, num and den describe an ideal integrator.
num = ones(Nsamp,1)/Nsamp;
den = 1;
EbNo = [0:20]; % Range of Eb/No values under study
ber = semianalytic(txsig,rxsig,'qam',M,Nsamp,num,den,EbNo);

% For comparison, calculate theoretical BER.
bertheory = berawgn(EbNo,'qam',M);

% Plot computed BER and theoretical BER.

3-7

3 Performance Evaluation

figure; semilogy(EbNo,ber,'k*');
hold on; semilogy(EbNo,bertheory,'ro');
title('Semianalytic BER Compared with Theoretical BER');
legend('Semianalytic BER with Phase Offset',...

'Theoretical BER Without Phase Offset','Location','SouthWest');
hold off;

The example creates a figure like the one below.

3-8

Theoretical Performance Results

Theoretical Performance Results
While the biterr function discussed above can help you gather empirical
error statistics, you might also want to compare those results with theoretical
error statistics. Certain types of communication systems are associated with
closed-form expressions for the bit error rate or a bound on it. The functions
listed in the table below compute the closed-form expressions for some types
of communication systems, where such expressions exist.

Type of Communication System Function

Uncoded AWGN channel berawgn

Coded AWGN channel bercoding

Uncoded Rayleigh fading channel berfading

Uncoded AWGN channel with
imperfect synchronization

bersync

Each function’s reference page lists one or more books containing the
closed-form expressions that the function implements.

Plotting Theoretical Error Rates
The example below uses the bercoding function to compute upper bounds on
bit error rates for convolutional coding with a soft-decision decoder. The data
used for the generator and distance spectrum are from [5] and [2], respectively.

coderate = 1/4; % Code rate
% Create a structure dspec with information about distance spectrum.
dspec.dfree = 10; % Minimum free distance of code
dspec.weight = [1 0 4 0 12 0 32 0 80 0 192 0 448 0 1024 ...

0 2304 0 5120 0]; % Distance spectrum of code
EbNo = 3:0.5:8;
berbound = bercoding(EbNo,'conv','soft',coderate,dspec);
semilogy(EbNo,berbound) % Plot the results.
xlabel('E_b/N_0 (dB)'); ylabel('Upper Bound on BER');
title('Theoretical Bound on BER for Convolutional Coding');
grid on;

3-9

3 Performance Evaluation

The example produces the following plot.

Comparing Theoretical and Empirical Error Rates
The example below uses the berawgn function to compute symbol error rates
for pulse amplitude modulation (PAM) with a series of Eb/N0 values. For
comparison, the code simulates 8–PAM with an AWGN channel and computes
empirical symbol error rates. The code also plots the theoretical and empirical
symbol error rates on the same set of axes.

% 1. Compute theoretical error rate using BERAWGN.
M = 8; EbNo = [0:13];
ser = berawgn(EbNo,'pam',M).*log2(M);
% Plot theoretical results.
figure; semilogy(EbNo,ser,'r');
xlabel('E_b/N_0 (dB)'); ylabel('Symbol Error Rate');
grid on; drawnow;

% 2. Compute empirical error rate by simulating.
% Set up.
n = 10000; % Number of symbols to process
k = log2(M); % Number of bits per symbol
% Convert from EbNo to SNR.
% Note: Because No = 2*noiseVariance^2, we must add 3 dB

3-10

Theoretical Performance Results

% to get SNR. For details, see Proakis book listed in
% "Selected Bibliography for Performance Evaluation."
snr = EbNo+3+10*log10(k);
ynoisy=zeros(n,length(snr)); % Preallocate to save time.

% Main steps in the simulation
x = randint(n,1,M); % Create message signal.
y = pammod(x,M); % Modulate.
% Send modulated signal through AWGN channel.
% Loop over different SNR values.
for jj = 1:length(snr)

ynoisy(:,jj) = awgn(real(y),snr(jj),'measured');
end
z = pamdemod(ynoisy,M); % Demodulate.

% Compute symbol error rate from simulation.
[num,rt] = symerr(x,z);

% 3. Plot empirical results, in same figure.
hold on; semilogy(EbNo,rt,'b.');
legend('Theoretical SER','Empirical SER');
title('Comparing Theoretical and Empirical Error Rates');
hold off;

The example produces a plot like the one below. Your plot might vary because
the simulation uses random numbers.

3-11

3 Performance Evaluation

3-12

Error Rate Plots

Error Rate Plots
Error rate plots provide a visual way to examine the performance of a
communication system, and they are often included in publications. This
section mentions some of the tools that you can use to create error rate plots,
modify them to suit your needs, and do curve fitting on error rate data.
It also provides an example of curve fitting. For more detailed discussions
about the more general plotting capabilities in MATLAB, see the MATLAB
documentation set.

Creating Error Rate Plots Using semilogy
In many error rate plots, the horizontal axis indicates Eb/N0 values in dB
and the vertical axis indicates the error rate using a logarithmic (base 10)
scale. To see an example of such a plot, as well as the code that creates it, see
“Comparing Theoretical and Empirical Error Rates” on page 3-10. The part of
that example that creates the plot uses the semilogy function to produce a
logarithmic scale on the vertical axis and a linear scale on the horizontal axis.

Other examples that illustrate the use of semilogy are in these sections:

• “Example: Using the Semianalytic Technique” on page 3-7, which also
illustrates

- Plotting two sets of data on one pair of axes

- Adding a title

- Adding a legend

• “Plotting Theoretical Error Rates” on page 3-9, which also illustrates

- Adding axis labels

- Adding grid lines

Curve Fitting for Error Rate Plots
Curve fitting is useful when you have a small or imperfect data set but want
to plot a smooth curve for presentation purposes. The berfit function in the
Communications Toolbox offers curve fitting capabilities that are well-suited
to the situation when the empirical data describes error rates at different
Eb/N0 values. This function enables you to

3-13

3 Performance Evaluation

• Customize various relevant aspects of the curve-fitting process, such as
the type of closed-form function (from a list of preset choices) used to
generate the fit.

• Plot empirical data along with a curve that berfit fits to the data.

• Interpolate points on the fitted curve between Eb/N0 values in your
empirical data set, to make the plot smoother-looking.

• Collect relevant information about the fit, such as the numerical values of
points along the fitted curve and the coefficients of the fit expression.

Note The berfit function is intended for curve fitting or interpolation, not
extrapolation. Extrapolating BER data beyond an order of magnitude below
the smallest empirical BER value is inherently unreliable.

For a full list of inputs and outputs for berfit, see its reference page.

Example: Curve Fitting for an Error Rate Plot
This example simulates a simple DBPSK (differential binary phase shift
keying) communication system and plots error rate data for a series of Eb/N0
values. It uses the berfit function to fit a curve to the somewhat rough set of
empirical error rates. Because the example is long, this discussion presents
it in multiple steps:

• “Setting Up Parameters for the Simulation” on page 3-14

• “Simulating the System Using a Loop” on page 3-15

• “Plotting the Empirical Results and the Fitted Curve” on page 3-17

Setting Up Parameters for the Simulation
The first step in the example is to set up parameters that will be used during
the simulation. Parameters include the range of Eb/N0 values to consider
and the minimum number of errors that must occur before the simulation
computes an error rate for that Eb/N0 value.

3-14

Error Rate Plots

Note For most applications, you should base an error rate computation on
a larger number of errors than is used here (for instance, you might change
numerrmin to 100 in the code below). However, as shown, this example uses
a small number of errors merely to illustrate how curve fitting can smooth
out a rough data set.

% Set up initial parameters.
siglen = 1000; % Number of bits in each trial
M = 2; % DBPSK is binary.
EbNomin = 0; EbNomax = 10; % EbNo range, in dB
numerrmin = 5; % Compute BER only after 5 errors occur.
EbNovec = EbNomin:1:EbNomax; % Vector of EbNo values
numEbNos = length(EbNovec); % Number of EbNo values
% Preallocate space for certain data.
ber = zeros(1,numEbNos); % BER values
intv = cell(1,numEbNos); % Cell array of confidence intervals

Simulating the System Using a Loop
The next step in the example is to use a for loop to vary the Eb/N0 value
(denoted by EbNo in the code) and simulate the communication system for
each value. The inner while loop ensures that the simulation continues to use
a given EbNo value until at least the predefined minimum number of errors
has occurred. When the system is very noisy, this requires only one pass
through the while loop, but in other cases, this requires multiple passes.

The communication system simulation uses these toolbox functions:

• randint to generate a random message sequence

• dpskmod to perform DBPSK modulation

• awgn to model a channel with additive white Gaussian noise

• dpskdemod to perform DBPSK demodulation

• biterr to compute the number of errors for a given pass through the
while loop

• berconfint to compute the final error rate and confidence interval for a
given value of EbNo

3-15

3 Performance Evaluation

As the example progresses through the for loop, it collects data for later use
in curve fitting and plotting:

• ber, a vector containing the bit error rates for the series of EbNo values

• intv, a cell array containing the confidence intervals for the series of EbNo
values. Each entry in intv is a two-element vector that gives the endpoints
of the interval.

% Loop over the vector of EbNo values.
for jj = 1:numEbNos

EbNo = EbNovec(jj);
snr = EbNo; % Because of binary modulation
ntrials = 0; % Number of passes through the while loop below
numerr = 0; % Number of errors for this EbNo value
% Simulate until numerrmin errors occur.
while (numerr < numerrmin)

msg = randint(siglen, 1, M); % Generate message sequence.
txsig = dpskmod(msg,M); % Modulate.
rxsig = awgn(txsig, snr, 'measured'); % Add noise.
decodmsg = dpskdemod(rxsig,M); % Demodulate.
newerrs = biterr(msg,decodmsg); % Errors in this trial
numerr = numerr + newerrs; % Total errors for this EbNo value
ntrials = ntrials + 1; % Update trial index.

end
% Error rate and 98% confidence interval for this EbNo value
[ber(jj), intv1] = berconfint(numerr,(ntrials * siglen),.98);
intv{jj} = intv1; % Store in cell array for later use.
disp(['EbNo = ' num2str(EbNo) ' dB, ' num2str(numerr) ...

' errors, BER = ' num2str(ber(jj))])
end

This part of the example displays output in the Command Window as it
progresses through the for loop. Your exact output might be different,
because the example uses random numbers.

EbNo = 0 dB, 182 errors, BER = 0.182
EbNo = 1 dB, 156 errors, BER = 0.156
EbNo = 2 dB, 104 errors, BER = 0.104
EbNo = 3 dB, 66 errors, BER = 0.066
EbNo = 4 dB, 42 errors, BER = 0.042

3-16

Error Rate Plots

EbNo = 5 dB, 27 errors, BER = 0.027
EbNo = 6 dB, 13 errors, BER = 0.0065
EbNo = 7 dB, 7 errors, BER = 0.007
EbNo = 8 dB, 5 errors, BER = 0.00125
EbNo = 9 dB, 5 errors, BER = 0.000625
EbNo = 10 dB, 5 errors, BER = 0.00041667

Plotting the Empirical Results and the Fitted Curve
The final part of this example fits a curve to the BER data collected from the
simulation loop. It also plots error bars using the output from the berconfint
function.

% Use BERFIT to plot the best fitted curve,
% interpolating to get a smooth plot.
fitEbNo = EbNomin:0.25:EbNomax; % Interpolation values
berfit(EbNovec,ber,fitEbNo);

% Also plot confidence intervals.
hold on;
for jj=1:numEbNos

semilogy([EbNovec(jj) EbNovec(jj)],intv{jj},'g-+');
end
hold off;

3-17

3 Performance Evaluation

3-18

Eye Diagrams

Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects
of intersymbol interference and other channel impairments in digital
transmission. To construct an eye diagram, plot the received signal against
time on a fixed-interval axis. At the end of the fixed time interval, wrap
around to the beginning of the time axis. Thus the diagram consists of many
overlapping curves. One way to use an eye diagram is to look for the place
where the “eye” is most widely opened, and use that point as the decision
point when demapping a demodulated signal to recover a digital message.

To produce an eye diagram from a signal, use the eyediagram function. The
signal can have different formats, as the table below indicates.

Representing In-Phase and Quadrature Components of Signal

Signal Format Source of In-Phase
Components

Source of
Quadrature
Components

Real matrix with two
columns

First column Second column

Complex vector Real part Imaginary part

Real vector Vector contents Quadrature component
is always zero

Example: Eye Diagrams
The code below illustrates the use of the eye diagram for finding the best
decision point. It maps a random digital signal to a 16-QAM waveform, then
uses a raised cosine filter to simulate a noisy transmission channel. Several
commands manipulate the filtered data to isolate its steady-state behavior.
Then the eyediagram command produces an eye diagram from the resulting
signal.

% Define the M-ary number and sampling rates.
M = 16; Fd = 1; Fs = 10;
Pd = 100; % Number of points in the calculation

3-19

3 Performance Evaluation

msg_d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square QAM.
msg_a = qammod(msg_d,M);
% Assume the channel is equivalent to a raised cosine filter.
delay = 3; % Delay of the raised cosine filter
rcv = rcosflt(msg_a,Fd,Fs,'fir/normal',.5,delay);

% Truncate the output of rcosflt to remove response tails.
N = Fs/Fd;
propdelay = delay .* N + 1; % Propagation delay of filter
rcv1 = rcv(propdelay:end-(propdelay-1),:); % Truncated version

% Plot the eye diagram of the resulting signal sampled and
% displayed with no offset.
offset1 = 0;
h1 = eyediagram(rcv1,N,1/Fd,offset1);
set(h1,'Name','Eye Diagram Displayed with No Offset');

Notice that a vertical line down the center of the diagram would cross the
“eye” at its most widely opened point, as in the image below.

3-20

Eye Diagrams

If the eyediagram command used a different offset value, then a vertical line
down the center of the diagram would not cross the eye at the most widely
opened point. The code and image to illustrate this are below.

offset2 = 2;
h2 = eyediagram(rcv1,N,1/Fd,offset2,'r-');
set(h2,'Name','Eye Diagram Displayed with Offset=2');

As an additional example of using the eyediagram function, the commands
below display the eye diagram with no offset, but based on data that is
sampled with an offset of two samples. This sampling offset simulates
errors in timing that result from being two samples away from perfect
synchronization.

h3 = eyediagram(rcv1(1+offset2:end,:),N,1/Fd,0);
set(h3,'Name','Eye Diagram Sampled with Offset=2');

3-21

3 Performance Evaluation

Scatter Plots
A scatter plot of a signal shows the signal’s value at a given decision point. In
the best case, the decision point should be at the time when the eye of the
signal’s eye diagram is the most widely open.

To produce a scatter plot from a signal, use the scatterplot function. The
signal can have different formats, as in the case of the eyediagram function.
See the table Representing In-Phase and Quadrature Components of Signal
on page 3-19 for details.

Scatter plots are often used to visualize the signal constellation associated
with digital modulation. For more information, see “Plotting Signal
Constellations” on page 8-12.

Example: Scatter Plots
The code below is similar to the example from the section “Example: Eye
Diagrams” on page 3-19. It produces a scatter plot from the received analog
signal, instead of an eye diagram.

% Define the M-ary number and sampling rates.
M = 16; Fd = 1; Fs = 10; N = Fs/Fd;
Pd = 200; % Number of points in the calculation
msg_d = randint(Pd,1,M); % Random integers in the range [0,M-1]
% Modulate using square QAM.
msg_a = qammod(msg_d,M);
% Upsample the modulated signal.
msg_a = rectpulse(msg_a,N);
% Assume the channel is equivalent to a raised cosine filter.
rcv = rcosflt(msg_a,Fd,Fs);
% Create the scatter plot of the received signal,
% ignoring the first three and the last four symbols.
rcv_a = rcv(3*N+1:end-4*N,:);
h = scatterplot(rcv_a,N,0,'bx');

Varying the third parameter in the scatterplot command changes the offset.
An offset of zero yields optimal results, shown below.

3-22

Scatter Plots

The image below illustrates two offsets that are not optimal. The x’s and +’s
reflect offsets that are too late and too early, respectively. Notice that in the
diagram, the dots are the actual constellation points, while the other symbols
are perturbations of those points.

hold on;
scatterplot(rcv_a,N,N+1,'r+',h); % Plot +'s
scatterplot(rcv_a,N,N-1,'mx',h); % Plot x's
scatterplot(rcv_a,N,0,'b.',h); % Plot dots

3-23

3 Performance Evaluation

3-24

Selected Bibliography for Performance Evaluation

Selected Bibliography for Performance Evaluation
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase
Modulation, New York, Plenum Press, 1986.

[2] Frenger, Pål, Pål Orten, and Tony Ottosson, “Convolutional Codes with
Optimum Distance Spectrum,” IEEE Communications Letters, Vol. 3, No.
11, Nov. 1999, pp. 317-319.

[3] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation
of Communication Systems, New York, Plenum Press, 1992.

[4] Lindsey, William C., and Marvin K. Simon, Telecommunication Systems
Engineering, Englewood Cliffs, N.J., Prentice-Hall, 1973.

[5] Proakis, John G., Digital Communications, 4th ed., New York,
McGraw-Hill, 2001.

[6] Spilker, James J., Digital Communications by Satellite, Englewood Cliffs,
N.J., Prentice-Hall, 1977.

3-25

3 Performance Evaluation

3-26

4

BERTool: A Bit Error Rate
Analysis GUI

The following sections describe the Bit Error Rate Analysis Tool (BERTool)
and provide examples showing how to use this GUI.

“Summary of Features” (p. 4-2) Overview of the tool

“Opening BERTool” (p. 4-3) How to start the tool

“The BERTool Environment” (p. 4-4) The components of the tool and how
they relate to each other

“Computing Theoretical BERs” (p.
4-7)

Using the Theoretical panel

“Using the Semianalytic Technique
to Compute BERs” (p. 4-14)

Using the Semianalytic panel

“Running MATLAB Simulations” (p.
4-20)

Using the Monte Carlo panel with
MATLAB simulation functions

“Preparing Simulation Functions for
Use with BERTool” (p. 4-27)

Creating MATLAB simulation
functions that you can use with
BERTool

“Running Simulink Simulations” (p.
4-35)

Using the Monte Carlo panel with
Simulink® models

“Preparing Simulink Models for Use
with BERTool” (p. 4-41)

Creating Simulink models that you
can use with BERTool

“Managing BER Data” (p. 4-49) Sending data out of the tool and
bringing data into the tool

4 BERTool: A Bit Error Rate Analysis GUI

Summary of Features
BERTool is an interactive GUI for analyzing communication systems’ bit error
rate (BER) performance. Using BERTool you can

• Generate BER data for a communication system using

- Closed-form expressions for theoretical BER performance of selected
types of communication systems.

- The semianalytic technique.

- Simulations contained in MATLAB simulation functions or Simulink
models. After you create a function or model that simulates the system,
BERTool iterates over your choice of Eb/N0 values and collects the results.

• Plot one or more BER data sets on a single set of axes. For example,
you can graphically compare simulation data with theoretical results, or
simulation data from a series of similar models of a communication system.

• Fit a curve to a set of simulation data.

• Send BER data to the MATLAB workspace or to a file for any further
processing that you might want to perform.

For an animated demonstration of BERTool, see the Bit Error Rate Analysis
Tool demo.

Note BERTool is designed for analyzing bit error rates only, not symbol error
rates, word error rates, or other types of error rates. If, for example, your
simulation computes a symbol error rate (SER), then you should convert the
SER to a BER before using the simulation with BERTool.

4-2

matlab:playbackdemo%28%27BERToolDemo%27%29

Opening BERTool

Opening BERTool
To open BERTool, type

bertool

4-3

4 BERTool: A Bit Error Rate Analysis GUI

The BERTool Environment
This section gives an overview of the components of BERTool and how they
interact with each other.

Components of BERTool
BERTool includes these components:

• A data viewer pane at the top. It is initially empty.

After you instruct BERTool to generate one or more BER data sets, they
appear in the data viewer. An example that shows how data sets look
in the data viewer is in “Example: Using a MATLAB Simulation with
BERTool” on page 4-20.

• A set of tabbed panels on the bottom. Labeled Theoretical, Semianalytic,
and Monte Carlo, the panels correspond to the different methods by which
BERTool can generate BER data.

4-4

The BERTool Environment

To learn more about each of the methods, see

- “Computing Theoretical BERs” on page 4-7

- “Using the Semianalytic Technique to Compute BERs” on page 4-14

- “Running MATLAB Simulations” on page 4-20 or “Running Simulink
Simulations” on page 4-35

• A separate BER Figure window, which displays some or all of the BER
data sets that are listed in the data viewer. BERTool opens the BER
Figure window after it has at least one data set to display, so you do
not see the BER Figure window when you first open BERTool. For an
example of how the BER Figure window looks, see “Example: Using the
Theoretical Panel in BERTool” on page 4-8.

Interaction Among BERTool Components
The components of BERTool act as one integrated tool. These behaviors
reflect their integration:

• If you select a data set in the data viewer, then BERTool reconfigures the
tabbed panels to reflect the parameters associated with that data set and
also highlights the corresponding data in the BER Figure window. This is

4-5

4 BERTool: A Bit Error Rate Analysis GUI

useful if the data viewer displays multiple data sets and you want to recall
the meaning and origin of each data set.

• If you click data plotted in the BER Figure window, then BERTool
reconfigures the tabbed panels to reflect the parameters associated with
that data and also highlights the corresponding data set in the data viewer.

• If you configure the Semianalytic or Theoretical panel in a way that is
already reflected in an existing data set, then BERTool highlights that
data set in the data viewer. This prevents BERTool from duplicating its
computations and its entries in the data viewer, while still showing you the
results that you requested.

• If you close the BER Figure window, then you can reopen it by choosing
BER Figure from the Window menu in BERTool.

• If you select options in the data viewer that affect the BER plot, then the
BER Figure window reflects your selections immediately. Such options
relate to data set names, confidence intervals, curve fitting, and the
presence or absence of specific data sets in the BER plot.

Note If you want to observe the integration yourself but do not yet have any
data sets in BERTool, then first try the procedure in “Example: Using the
Theoretical Panel in BERTool” on page 4-8.

Note If you save the BER Figure window using the window’s File menu,
then the resulting file contains the contents of the window but not the
BERTool data that led to the plot. To save an entire BERTool session, see
“Saving a BERTool Session” on page 4-52.

4-6

Computing Theoretical BERs

Computing Theoretical BERs
You can use BERTool to generate and analyze theoretical BER data.
Theoretical data is useful for comparison with your simulation results.
However, closed-form BER expressions exist only for certain kinds of
communication systems.

To access the capabilities of BERTool related to theoretical BER data, use
this procedure:

1 Open BERTool and go to the Theoretical panel.

2 Set parameters to reflect the system whose performance you want
to analyze. Some parameters are visible and active only when other
parameters have specific values. See “Available Sets of Theoretical BER
Data” on page 4-10 for details.

3 Click Plot.

For an example that shows how to generate and analyze theoretical BER
data via BERTool, see “Example: Using the Theoretical Panel in BERTool”
on page 4-8.

4-7

4 BERTool: A Bit Error Rate Analysis GUI

Also, “Available Sets of Theoretical BER Data” on page 4-10 indicates which
combinations of parameters are available on the Theoretical panel, as well
as which underlying functions perform computations.

Example: Using the Theoretical Panel in BERTool
This example illustrates how to use BERTool to generate and plot theoretical
BER data. In particular, the example compares the performance of a
communication system that uses an AWGN channel and QAM modulation of
different orders.

Running the Theoretical Example

1 Open BERTool and go to the Theoretical panel.

2 Set parameters as shown below.

3 Click Plot.

BERTool creates an entry in the data viewer and plots the data in the BER
Figure window. Even though the parameters above requested that Eb/N0
go up to 18, BERTool plots only those BER values that are at least 10-8.

4-8

Computing Theoretical BERs

4 Change the Modulation order parameter to 16 and click Plot.

BERTool creates another entry in the data viewer and plots the new data in
the same BER Figure window (not pictured).

5 Change the Modulation order parameter to 64 and click Plot.

BERTool creates another entry in the data viewer and plots the new data
in the same BER Figure window.

4-9

4 BERTool: A Bit Error Rate Analysis GUI

6 To recall which value of Modulation order corresponds to a given curve,
click the curve; BERTool responds by adjusting the parameters in the
Theoretical panel to reflect the values that correspond to that curve.

7 To remove the last curve from the plot (but not from the data viewer), clear
the check box in the last entry of the data viewer in the Plot column. To
restore the curve to the plot, check the check box again.

Available Sets of Theoretical BER Data
Available combinations of valid combinations of parameters for the
Theoretical panel in BERTool depend on the types of systems for which
closed-form expressions exist for error statistics. The Theoretical panel
adjusts itself to your choices, so that the combination of parameters is always
valid. Note that you can set the Modulation order parameter by selecting a
choice from the menu or by typing a value in the field.

Combinations of Parameters for AWGN Channel Systems
The table below lists the available sets of theoretical BER data for systems
that use an AWGN channel.

4-10

Computing Theoretical BERs

Modulation Modulation
Order

Other Choices

Differential or nondifferential encoding;
Channel coding = None; other choices
related to synchronization

2

Differential or nondifferential encoding;
Block or Convolutional coding; Hard
or Soft decisions; other choices related
to code

Differential or nondifferential encoding;
Channel coding = None

4

Differential or nondifferential encoding;
Block or Convolutional coding; Hard
or Soft decisions; other choices related
to code

PSK
(assuming
Gray-coded
signal
constellation)

8, 16, 32, or a
higher power of 2

DPSK 2, 4, 8, 16, 32, or a
higher power of 2

PAM
(assuming
Gray-coded
signal
constellation)

2, 4, 8, 16, 32, or a
higher power of 2

QAM
(assuming
Gray-coded
signal
constellation)

4, 8, 16, 32, 64,
128, 256, 512,
1024, or a higher
power of 2

2, 4, 8, 16, or a
higher power of 2

Coherent demodulationFSK

2, 4, 8, 16, 32, or
64

Noncoherent demodulation

4-11

4 BERTool: A Bit Error Rate Analysis GUI

Modulation Modulation
Order

Other Choices

MSK 2 Differential or nondifferential encoding

CPFSK 2, 4, 8, 16, or a
higher power of 2

Modulation index > 0

For more information about specific combinations of parameters, including
bibliographic references that contain closed-form expressions, see these
functions’ reference pages:

• berawgn — For systems with no coding and perfect synchronization

• bercoding — For systems with channel coding

• bersync — For systems with BPSK modulation, no coding, and imperfect
synchronization

Combinations of Parameters for Rayleigh Channel Systems
The table below lists the available sets of theoretical BER data for systems
that use a Rayleigh channel.

Modulation Modulation
Order

Other Choices

2 or 4 Diversity order 1PSK

8, 16, 32, or a
higher power of 2

2 or 4 Diversity order 1DPSK

8, 16, 32, or a
higher power of 2

2 Diversity order 1; Coherent or
Noncoherent demodulation

FSK

4, 8, 16, or a higher
power of 2

Diversity order 1

4-12

Computing Theoretical BERs

For more information about specific combinations of parameters, including
bibliographic references that contain closed-form expressions, see the
reference page for the berfading function.

4-13

4 BERTool: A Bit Error Rate Analysis GUI

Using the Semianalytic Technique to Compute BERs
You can use BERTool to generate and analyze BER data via the semianalytic
technique. The semianalytic technique is discussed in “Performance
Results via the Semianalytic Technique” on page 3-5, and “When to Use the
Semianalytic Technique” on page 3-5 is particularly relevant as background
material.

To access the semianalytic capabilities of BERTool, open the Semianalytic
panel.

These topics describe how to use the semianalytic technique via BERTool:

• “Example: Using the Semianalytic Panel in BERTool” on page 4-15

• “Procedure for Using the Semianalytic Panel in BERTool” on page 4-17

For further details about how BERTool applies the semianalytic technique,
see the reference page for the semianalytic function, which BERTool uses to
perform computations.

4-14

Using the Semianalytic Technique to Compute BERs

Example: Using the Semianalytic Panel in BERTool
This example illustrates how BERTool applies the semianalytic technique,
using 16-QAM modulation. This example is a variation on the example in
“Example: Using the Semianalytic Technique” on page 3-7, tailored to use
BERTool instead of using the semianalytic function directly.

Running the Semianalytic Example

1 To set up the transmitted and received signals, run steps 1 through 4 from
the code example in “Example: Using the Semianalytic Technique” on
page 3-7. The code is repeated below.

% Step 1. Generate message signal of length >= M^L.
M = 16; % Alphabet size of modulation
L = 1; % Length of impulse response of channel
msg = [0:M-1 0]; % M-ary message sequence of length > M^L

% Step 2. Modulate the message signal using baseband modulation.
modsig = qammod(msg,M); % Use 16-QAM.
Nsamp = 16;
modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.
txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.
rxsig = txsig*exp(j*pi/180); % Static phase offset of 1 degree

2 Open BERTool and go to the Semianalytic panel.

3 Set parameters as shown below.

4-15

4 BERTool: A Bit Error Rate Analysis GUI

4 Click Plot.

Visible Results of the Semianalytic Example
After you click Plot, BERTool creates a listing for the resulting data in the
data viewer.

BERTool plots the data in the BER Figure window.

4-16

Using the Semianalytic Technique to Compute BERs

Procedure for Using the Semianalytic Panel in
BERTool
The procedure below describes how you would typically implement the
semianalytic technique using BERTool:

1 Generate a message signal containing at least ML symbols, where M is
the alphabet size of the modulation and L is the length of the impulse
response of the channel, in symbols. A common approach is to start with an
augmented binary pseudonoise (PN) sequence of total length (log2M)M

L. An
augmented PN sequence is a PN sequence with an extra zero appended,
which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal using baseband modulation.
Supported modulation types are listed on the reference page for
semianalytic.

3 Filter the modulated signal with a transmit filter. This filter is often a
square-root raised cosine filter, but you can also use a Butterworth, Bessel,

4-17

4 BERTool: A Bit Error Rate Analysis GUI

Chebyshev type 1 or 2, elliptic, or more general FIR or IIR filter. Store the
result of this step as txsig for later use.

4 Run the filtered signal through a noiseless channel. This channel can
include multipath fading effects, phase shifts, amplifier nonlinearities,
quantization, and additional filtering, but it must not include noise. Store
the result of this step as rxsig for later use.

5 On the Semianalytic panel of BERTool, enter parameters as in the table
below.

Parameter Name Meaning

Eb/No range A vector that lists the values of Eb/N0 for which
you want to collect BER data. The value in
this field can be a MATLAB expression or the
name of a variable in the MATLAB workspace.

Modulation type

Modulation order

These parameters describe the modulation
scheme that you used earlier in this procedure.

Differential encoding This check box, which is visible and active for
MSK and PSK modulation, enables you to
choose between differential and nondifferential
encoding.

Samples per symbol The number of samples per symbol in the
transmitted signal. This value is also the
sampling rate of the transmitted and received
signals, in Hz.

Transmitted signal The txsig signal that you generated earlier
in this procedure

Received signal The rxsig signal that you generated earlier
in this procedure

Numerator

Denominator

Coefficients of the receiver filter that BERTool
applies to the received signal

4-18

Using the Semianalytic Technique to Compute BERs

Note Consistency among the values in the GUI is important. For example,
if the signal referenced in the Transmitted signal field was generated
using DPSK and you set Modulation type to MSK then the results might
not be meaningful.

6 Click Plot.

Semianalytic Computations and Results
After you click Plot, BERTool performs these tasks:

• Filters rxsig and then determines the error probability of each received
signal point by analytically applying the Gaussian noise distribution
to each point. BERTool averages the error probabilities over the entire
received signal to determine the overall error probability. If the error
probability calculated in this way is a symbol error probability, then
BERTool converts it to a bit error rate, typically by assuming Gray coding.
(If the modulation type is DQPSK or cross QAM, the result is an upper
bound on the bit error rate rather than the bit error rate itself.)

• Enters the resulting BER data in the data viewer of the BERTool window.

• Plots the resulting BER data in the BER Figure window.

4-19

4 BERTool: A Bit Error Rate Analysis GUI

Running MATLAB Simulations
You can use BERTool in conjunction with your own MATLAB simulation
functions to generate and analyze BER data. The MATLAB function
simulates the communication system whose performance you want to study.
BERTool invokes the simulation for Eb/N0 values that you specify, collects the
BER data from the simulation, and creates a plot. BERTool also enables you
to easily change the Eb/N0 range and stopping criteria for the simulation.
The topics in this section are

• “Example: Using a MATLAB Simulation with BERTool” on page 4-20

• “Varying the Stopping Criteria” on page 4-23

• “Plotting Confidence Intervals” on page 4-24

• “Fitting BER Points to a Curve” on page 4-26

To learn how to make your own simulation functions compatible with
BERTool, see “Preparing Simulation Functions for Use with BERTool” on
page 4-27.

Example: Using a MATLAB Simulation with BERTool
This example illustrates how BERTool can run a MATLAB simulation
function. The function is viterbisim, one of the demonstration files included
with the Communications Toolbox.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo panel. (The default parameters
depend on whether you have the Communications Blockset installed. Also
note that the BER variable name field applies only to Simulink models.)

2 Set parameters as shown below.

4-20

Running MATLAB Simulations

3 Click Run.

BERTool runs the simulation function once for each specified value of Eb/N0
and gathers BER data. (Note that while BERTool is busy with this task,
it cannot process certain other tasks, including plotting data from the
other panels of the GUI.)

Then BERTool creates a listing in the data viewer.

BERTool plots the data in the BER Figure window.

4-21

4 BERTool: A Bit Error Rate Analysis GUI

4 To change the range of Eb/N0 while reducing the number of bits processed
in each case, type [5 5.2 5.3] in the Eb/No range field, type 1e5 in the
Number of bits field, and click Run.

BERTool runs the simulation function again for each new value of Eb/N0
and gathers new BER data. Then BERTool creates another listing in the
data viewer.

BERTool plots the data in the BER Figure window, adjusting the
horizontal axis to accommodate the new data.

4-22

Running MATLAB Simulations

Notice that the two points corresponding to 5 dB from the two data sets
are different; this is because the smaller value of Number of bits in the
second simulation caused the simulation to end before observing many
errors. To learn more about the criteria that BERTool uses for ending
simulations, see “Varying the Stopping Criteria” on page 4-23.

For another example that uses BERTool to run a MATLAB simulation
function, see “Example: Preparing a Simulation Function for Use with
BERTool” on page 4-31.

Varying the Stopping Criteria
When you create a MATLAB simulation function for use with BERTool, you
must control the flow so that the simulation ends when it either detects a
target number of errors or processes a maximum number of bits, whichever
occurs first. To learn more about this requirement, see “Requirements
for Functions” on page 4-27; for an example, see “Example: Preparing a
Simulation Function for Use with BERTool” on page 4-31.

4-23

4 BERTool: A Bit Error Rate Analysis GUI

After creating your function, you set the target number of errors and the
maximum number of bits in the Monte Carlo panel of BERTool.

Typically, a Number of errors value of at least 100 produces an accurate
error rate. The Number of bits value prevents the simulation from running
too long, especially at large values of Eb/N0. However, if the Number of
bits value is so small that the simulation collects very few errors, then the
error rate might not be accurate. You can use confidence intervals to gauge
the accuracy of the error rates that your simulation produces; the larger the
confidence interval, the less accurate the computed error rate.

As an example, follow the procedure described in “Example: Using a MATLAB
Simulation with BERTool” on page 4-20 and then set Confidence Level to
95 for each of the two data sets. Notice that the confidence intervals for the
second data set are larger than those for the first data set. This is because
the second data set uses a small value for Number of bits, relative to the
communication system properties and the values in Eb/No range, resulting
in BER values based on only a small number of observed errors.

Note You can also use the Stop button in BERTool to stop a series of
simulations prematurely, as long as your function is set up to detect and react
to the button press.

Plotting Confidence Intervals
After you run a simulation with BERTool, the resulting data set in the data
viewer has an active menu in the Confidence Level column. The default
value is off, so that the simulation data in the BER Figure window does not
show confidence intervals.

To show confidence intervals in the BER Figure window, set Confidence
Level to a numerical value: 90%, 95%, or 99%.

4-24

Running MATLAB Simulations

The plot in the BER Figure window responds immediately to your choice. A
sample plot is below.

For an example that plots confidence intervals for a Simulink simulation, see
“Example: Using a Simulink Model with BERTool” on page 4-36.

To find confidence intervals for levels not listed in the Confidence Level
menu, use the berconfint function.

4-25

4 BERTool: A Bit Error Rate Analysis GUI

Fitting BER Points to a Curve
After you run a simulation with BERTool, the BER Figure window plots
individual BER data points. To fit a curve to a data set that contains at least
four points, check the box in the Fit column of the data viewer.

The plot in the BER Figure window responds immediately to your choice. A
sample plot is below.

For an example that performs curve fitting for data from a Simulink
simulation and generates the plot shown above, see “Example: Using a
Simulink Model with BERTool” on page 4-36. For an example that performs
curve fitting for data from a MATLAB simulation function, see “Example:
Preparing a Simulation Function for Use with BERTool” on page 4-31.

For greater flexibility in the process of fitting a curve to BER data, use the
berfit function.

4-26

Preparing Simulation Functions for Use with BERTool

Preparing Simulation Functions for Use with BERTool
A MATLAB simulation function that you use with BERTool must have certain
properties. This section lists the requirements, provides a template that
you can use when adapting your code to work with BERTool, and provides
an example. The topics are

• “Requirements for Functions” on page 4-27

• “Template for a Simulation Function” on page 4-28

• “Example: Preparing a Simulation Function for Use with BERTool” on
page 4-31

Requirements for Functions
When you create a MATLAB function for use with BERTool, you must ensure
that the function interacts properly with the GUI. This section describes the
inputs, outputs, and basic operation of a BERTool-compatible function.

Input Arguments
BERTool evaluates your entries in fields of the GUI and passes data to the
function as these input arguments, in sequence:

• One value from the Eb/No range vector each time BERTool invokes the
simulation function

• The Number of errors value

• The Number of bits value

Output Arguments
Your simulation function must compute and return these output arguments,
in sequence:

• Bit error rate of the simulation

• Number of bits processed when computing the BER

BERTool uses these output arguments when reporting and plotting results.

4-27

4 BERTool: A Bit Error Rate Analysis GUI

Simulation Operation
Your simulation function must perform these tasks:

• Simulate the communication system for the Eb/N0 value specified in the
first input argument.

• Stop simulating when the number of errors or the number of processed bits
equals or exceeds the corresponding threshold specified in the second or
third input argument, respectively.

• Detect whether you click the Stop button in BERTool and abort the
simulation in that case.

Template for a Simulation Function
Below is a template that you can use when adapting your code to work with
BERTool. You can open it in an editor by entering edit bertooltemplate
in the MATLAB Command Window. The description in “Understanding the
Template” on page 4-29 explains the template’s key sections, while “Using
the Template” on page 4-30 indicates how to use the template with your own
simulation code. Alternatively, you can develop your simulation function
without using the template, but be sure that it satisfies the requirements
described in “Requirements for Functions” on page 4-27.

Note The template is not yet ready for use with BERTool. You must insert
your own simulation code in the places marked INSERT YOUR CODE HERE.
For a complete example based on this template, see “Example: Preparing a
Simulation Function for Use with BERTool” on page 4-31.

function [ber, numBits] = bertooltemplate(EbNo, maxNumErrs, maxNumBits)
% Import Java class for BERTool.
import com.mathworks.toolbox.comm.BERTool;

% Initialize variables related to exit criteria.
totErr = 0; % Number of errors observed
numBits = 0; % Number of bits processed

% --- Set up parameters. ---
% --- INSERT YOUR CODE HERE.

4-28

Preparing Simulation Functions for Use with BERTool

% Simulate until number of errors exceeds maxNumErrs
% or number of bits processed exceeds maxNumBits.
while((totErr < maxNumErrs) && (numBits < maxNumBits))

% Check if the user clicked the Stop button of BERTool.
if (BERTool.getSimulationStop)

break;
end

% --- Proceed with simulation.
% --- Be sure to update totErr and numBits.
% --- INSERT YOUR CODE HERE.

end % End of loop

% Compute the BER.
ber = totErr/numBits;

Understanding the Template
From studying the code in the function template above, you can observe
how the function either satisfies the requirements listed in “Requirements
for Functions” on page 4-27 or indicates where your own insertions of code
should do so. In particular,

• The function has appropriate input and output arguments.

• The function includes a placeholder for code that simulates a system for
the given Eb/N0 value.

• The function uses a loop structure to stop simulating when the number
of errors exceeds maxNumErrs or the number of bits exceeds maxNumBits,
whichever occurs first.

Note Although the while statement of the loop describes the exit criteria,
your own code inserted into the section marked Proceed with simulation
must compute the number of errors and the number of bits. If you do
not perform these computations in your own code, then clicking Stop is
the only way to terminate the loop.

4-29

4 BERTool: A Bit Error Rate Analysis GUI

• In each iteration of the loop, the function detects when the user clicks the
Stop button in BERTool.

Using the Template
Here is a procedure for using the template with your own simulation code:

1 Determine the setup tasks that you must perform. For example, you might
want to initialize variables containing the modulation alphabet size, filter
coefficients, a convolutional coding trellis, or the states of a convolutional
interleaver. Place the code for these setup tasks in the template section
marked Set up parameters.

2 Determine the core simulation tasks, assuming that all setup work
has already been performed. For example, these tasks might include
error-control coding, modulation/demodulation, and channel modeling.
Place the code for these core simulation tasks in the template section
marked Proceed with simulation.

3 Also in the template section marked Proceed with simulation, include
code that updates the values of totErr and numBits. The quantity totErr
represents the number of errors observed so far. The quantity numBits
represents the number of bits processed so far. The computations to update
these variables depend on how your core simulation tasks work.

Note Updating the numbers of errors and bits is important for ensuring
that the loop terminates. However, if you accidentally create an infinite
loop early in your development work using the function template, then you
can use the Stop button in BERTool to abort the simulation.

4 Omit any setup code that initializes EbNo, maxNumErrs, or maxNumBits,
because BERTool passes these quantities to the function as input
arguments, after evaluating the data entered in the GUI.

5 Adjust your code or the template’s code as necessary to use consistent
variable names and meanings. For example, if your original code uses a
variable called ebn0 and the template’s function declaration (first line) uses
the variable name EbNo, then you must change one of the names so that
they match. As another example, if your original code uses SNR instead of
Eb/N0, then you must convert quantities appropriately.

4-30

Preparing Simulation Functions for Use with BERTool

Example: Preparing a Simulation Function for Use
with BERTool
This section adapts the function template given in “Template for a Simulation
Function” on page 4-28 to use simulation code from the documentation
example in “Example: Curve Fitting for an Error Rate Plot” on page 3-14.

Preparing the Function
To prepare the function for use with BERTool, follow these steps:

1 Copy the template from “Template for a Simulation Function” on page 4-28
into a new M-file in the MATLAB Editor. Save it in a directory on your
MATLAB path, using the filename bertool_simfcn.

2 From the original example, the following lines are setup tasks. They are
modified from the original example to rely on the input arguments that
BERTool provides to the function, instead of defining variables such as
EbNovec and numerrmin directly.

% Set up initial parameters.
siglen = 1000; % Number of bits in each trial
M = 2; % DBPSK is binary.
snr = EbNo; % Because of binary modulation
ntrials = 0; % Number of passes through the loop

Place these lines of code in the template section marked Set up
parameters.

3 From the original example, the following lines are the core simulation
tasks, after all setup work has been performed.

msg = randint(siglen, 1, M); % Generate message sequence.
txsig = dpskmod(msg,M); % Modulate.
rxsig = awgn(txsig, snr, 'measured'); % Add noise.
decodmsg = dpskdemod(rxsig,M); % Demodulate.
newerrs = biterr(msg,decodmsg); % Errors in this trial
ntrials = ntrials + 1; % Update trial index.

Place the code for these core simulation tasks in the template section
marked Proceed with simulation.

4-31

4 BERTool: A Bit Error Rate Analysis GUI

4 Also in the template section marked Proceed with simulation (after the
code from the previous step), include the following new lines of code that
update the values of totErr and numBits.

% Update the total number of errors.
totErr = totErr + newerrs;

% Update the total number of bits processed.
numBits = ntrials * siglen;

The bertool_simfcn function is now compatible with BERTool. Note that
unlike the original example, the function here does not initialize EbNovec,
define EbNo as a scalar, or use numerrmin as the target number of errors; this
is because BERTool provides input arguments for similar quantities. The
bertool_simfcn function also excludes code related to plotting, curve fitting,
and confidence intervals in the original example because BERTool enables
you to do similar tasks interactively without writing code.

Using the Prepared Function
To use bertool_simfcn in conjunction with BERTool, continue the example by
following these steps:

1 Open BERTool and go to the Monte Carlo panel.

2 Set parameters on the Monte Carlo panel as shown below.

4-32

Preparing Simulation Functions for Use with BERTool

3 Click Run.

BERTool spends some time computing results and then plots them. Note
that they do not appear to fall along a smooth curve because the simulation
required only five errors for each value in EbNo.

4 To fit a curve to the series of points in the BER Figure window, check the
box next to Fit in the data viewer.

BERTool plots the curve, as below.

4-33

4 BERTool: A Bit Error Rate Analysis GUI

4-34

Running Simulink Simulations

Running Simulink Simulations
You can use BERTool in conjunction with Simulink models to generate and
analyze BER data. The Simulink model simulates the communication system
whose performance you want to study, while BERTool manages a series of
simulations using the model and collects the BER data.

Note To use Simulink models within BERTool, you must have a Simulink
license. Also, the Communications Blockset is highly recommended. The rest
of this section assumes that you have a license for both Simulink and the
Communications Blockset.

To access the capabilities of BERTool related to Simulink models, open the
Monte Carlo panel.

4-35

4 BERTool: A Bit Error Rate Analysis GUI

These topics describe how to use Simulink models in conjunction with
BERTool:

• “Example: Using a Simulink Model with BERTool” on page 4-36

• “Varying the Stopping Criteria” on page 4-39

For further details about confidence intervals and curve fitting for simulation
data, see “Plotting Confidence Intervals” on page 4-24 and “Fitting BER
Points to a Curve” on page 4-26, respectively.

Example: Using a Simulink Model with BERTool
This example illustrates how BERTool can manage a series of simulations of
a Simulink model, and how you can vary the plot. The model is graycode,
one of the demonstration models included with the Communications Blockset.
The example assumes that you have the Communications Blockset installed.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo panel. Notice that the
model’s filename, graycode.mdl, appears as the Simulation M-file or
model parameter. (If viterbisim.m appears there, then check that the
Communications Blockset is installed.)

2 Click Run.

BERTool loads the model into memory (which in turn initializes several
variables in the MATLAB workspace), runs the simulation once for each
value of Eb/N0, and gathers BER data. Then BERTool creates a listing
in the data viewer.

BERTool plots the data in the BER Figure window.

4-36

Running Simulink Simulations

3 To fit a curve to the series of points in the BER Figure window, check the
box next to Fit in the data viewer.

BERTool plots the curve, as below.

4-37

4 BERTool: A Bit Error Rate Analysis GUI

4 To indicate the 99% confidence interval around each point in the simulation
data, set Confidence Level to 99% in the data viewer.

BERTool displays error bars to represent the confidence intervals, as below.

4-38

Running Simulink Simulations

Another example that uses BERTool to manage a series of Simulink
simulations is in “Example: Preparing a Model for Use with BERTool” on
page 4-44.

Varying the Stopping Criteria
When you create a Simulink model for use with BERTool, you must set it up
so that the simulation ends when it either detects a target number of errors
or processes a maximum number of bits, whichever occurs first. To learn
more about this requirement, see “Requirements for Models” on page 4-41;
for an example, see “Example: Preparing a Model for Use with BERTool”
on page 4-44.

After creating your Simulink model, you set the target number of errors and
the maximum number of bits in the Monte Carlo panel of BERTool.

4-39

4 BERTool: A Bit Error Rate Analysis GUI

Typically, a Number of errors value of at least 100 produces an accurate
error rate. The Number of bits value prevents the simulation from running
too long, especially at large values of Eb/N0. However, if the Number of
bits value is so small that the simulation collects very few errors, then the
error rate might not be accurate. You can use confidence intervals to gauge
the accuracy of the error rates that your simulation produces; the larger the
confidence interval, the less accurate the computed error rate.

You can also use the Stop button in BERTool to stop a series of simulations
prematurely.

4-40

Preparing Simulink Models for Use with BERTool

Preparing Simulink Models for Use with BERTool
A Simulink model that you use with BERTool must have certain properties.
In many cases, it is not difficult to make new or existing models have these
properties. This section lists the requirements, offers tips, and provides an
example. The topics are

• “Requirements for Models” on page 4-41

• “Tips for Preparing Models” on page 4-41

• “Example: Preparing a Model for Use with BERTool” on page 4-44

Requirements for Models
A Simulink model must satisfy these requirements before you can use it
with BERTool, where the case-sensitive variable names must be exactly as
shown below:

• The channel block must use the variable EbNo rather than a hard-coded
value for Eb/N0.

• The simulation must stop when the error count reaches the value of the
variable maxNumErrs or when the number of processed bits reaches the
value of the variable maxNumBits, whichever occurs first.

You can configure the Error Rate Calculation block in the Communications
Blockset to stop the simulation based on such criteria.

• The simulation must send the final error rate data to the MATLAB
workspace as a variable whose name you enter in the BER variable name
field in BERTool. The variable must be a three-element vector that lists the
BER, the number of bit errors, and the number of processed bits.

This three-element vector format is supported by the Error Rate
Calculation block.

Tips for Preparing Models
Here are some tips for preparing a Simulink model for use with BERTool:

• To avoid using an undefined variable name in the dialog box for a Simulink
block in the steps that follow, set up variables in the MATLAB workspace
using a command such as the one below.

4-41

4 BERTool: A Bit Error Rate Analysis GUI

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

You might also want to put the same command in the model’s preload
function callback, to initialize the variables if you reopen the model in
a future MATLAB session.

When you use BERTool, it provides the actual values based on what you
enter in the GUI, so the initial values above are somewhat arbitrary.

• To model the channel, use the AWGN Channel block in the Communications
Blockset with these parameters:

- Mode = Signal to noise ratio (Eb/No)

- Eb/No = EbNo

• To compute the error rate, use the Error Rate Calculation block in the
Communications Blockset with these parameters:

- Check Stop simulation.

- Target number of errors = maxNumErrs

- Maximum number of symbols = maxNumBits

4-42

Preparing Simulink Models for Use with BERTool

• To send data from the Error Rate Calculation block to the MATLAB
workspace, set Output data to Port, attach a Signal to Workspace block
from the Signal Processing Blockset, and set the latter block’s Limit data
points to last parameter to 1. The Variable name parameter in the
Signal to Workspace block must match the value you enter in the BER
variable name field of BERTool.

• If your model computes a symbol error rate instead of a bit error rate, then
use the Integer to Bit Converter block in the Communications Blockset
to convert symbols to bits.

• Frame-based simulations often run faster than sample-based simulations
for the same number of bits processed. Note that the number of errors
or number of processed bits might exceed the values that you enter in
BERTool, because the simulation always processes a fixed amount of data
in each frame.

• If you have an existing model that uses the AWGN Channel block using a
Mode parameter other than Signal to noise ratio (Eb/No), then you

4-43

4 BERTool: A Bit Error Rate Analysis GUI

can adapt the block to use the Eb/No mode instead. To learn about how the
block’s different modes are related to each other, press the AWGN Channel
block’s Help button to view the online reference page.

• If your model uses a preload function or other callback to initialize
variables in the MATLAB workspace upon loading, then make sure before
you use the Run button in BERTool that one of these conditions is met:

- The model is not currently in memory. In this case, BERTool loads the
model into memory and runs the callback functions.

- The model is in memory (whether in a window or not), and the variables
are intact.

If you clear or overwrite the model’s variables and want to restore their
values before using the Run button in BERTool, then you can use the
bdclose function in the MATLAB Command Window to clear the model
from memory. This causes BERTool to reload the model after you press
Run. Similarly, if you refresh your workspace by issuing a clear all or
clear variables command, then you should also clear the model from
memory by using bdclose all.

Example: Preparing a Model for Use with BERTool
This example starts from a Simulink model originally created as an example
in the Communications Blockset Getting Started documentation, and
shows how to tailor the model for use with BERTool. The example also
illustrates how to compare the BER performance of a Simulink simulation
with theoretical BER results. The example assumes that you have the
Communications Blockset installed.

To prepare the model for use with BERTool, follow these steps, using the exact
case-sensitive variable names as shown:

1 Open the model by entering the following command in the MATLAB
Command Window.

bpskdoc

4-44

Preparing Simulink Models for Use with BERTool

2 To initialize parameters in the MATLAB workspace and avoid using
undefined variables as block parameters, enter the following command in
the MATLAB Command Window.

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

3 To ensure that BERTool uses the correct amount of noise each time it
runs the simulation, open the dialog box for the AWGN Channel block
by double-clicking the block. Set Es/No to EbNo and click OK. In this
particular model, Es/N0 is equivalent to Eb/N0 because the modulation
type is BPSK.

4 To ensure that BERTool uses the correct stopping criteria for each iteration,
open the dialog box for the Error Rate Calculation block. Set Target
number of errors to maxNumErrs, set Maximum number of symbols to
maxNumBits, and click OK.

5 To enable BERTool to access the BER results that the Error Rate
Calculation block computes, insert a Signal to Workspace block in the
model and connect it to the output of the Error Rate Calculation block.

Note The Signal to Workspace block is in the Signal Processing Blockset
and is different from the To Workspace block in Simulink.

4-45

4 BERTool: A Bit Error Rate Analysis GUI

6 To configure the newly added Signal to Workspace block, open its dialog
box. Set Variable name to BER, set Limit data points to last to 1, and
click OK.

7 (Optional) To make the simulation run faster, especially at high values of
Eb/N0, open the dialog box for the Bernoulli Binary Generator block. Check
Frame-based outputs and set Samples per frame to 1000.

8 Save the model in a directory on your MATLAB path, using the filename
bertool_bpskdoc.mdl.

9 (Optional) To cause Simulink to initialize parameters if you reopen this
model in a future MATLAB session, enter the following command in the
MATLAB Command Window and then resave the model.

set_param('bertool_bpskdoc','preLoadFcn',...
'EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;');

The bertool_bpskdoc model is now compatible with BERTool. To use it in
conjunction with BERTool, continue the example by following these steps:

10 Open BERTool and go to the Monte Carlo panel.

11 Set parameters on the Monte Carlo panel as shown below.

4-46

Preparing Simulink Models for Use with BERTool

12 Click Run.

BERTool spends some time computing results and then plots them.

13 To compare these simulation results with theoretical results, go to the
Theoretical panel in BERTool and set parameters as shown below.

4-47

4 BERTool: A Bit Error Rate Analysis GUI

14 Click Plot.

BERTool plots the theoretical curve in the BER Figure window along
with the earlier simulation results.

4-48

Managing BER Data

Managing BER Data
After you generate BER data using BERTool, you can manage the data in
various ways. This section describes how to accomplish tasks listed in the
table below.

Task Section

Manipulate data from BERTool
using MATLAB commands

“Exporting Data Sets” on page
4-50 and “Examining an Exported
Structure” on page 4-51

Save an individual data set from the
data viewer

“Exporting Data Sets” on page 4-50

Save all data from the data viewer “Saving a BERTool Session” on page
4-52

Load previously saved data into
BERTool

“Importing Data Sets or BERTool
Sessions” on page 4-53

Rename or delete sets of data in the
data viewer

“Managing Data in the Data Viewer”
on page 4-54

Change the sequence of columns in
the data viewer

“Managing Data in the Data Viewer”
on page 4-54

Exporting Data Sets or BERTool Sessions
BERTool enables you to export individual data sets to the MATLAB workspace
or to MAT-files. One option for exporting is convenient for processing the data
outside BERTool. For example, to create a highly customized plot using data
from BERTool, export the BERTool data set to the MATLAB workspace and
use any of the plotting commands in MATLAB. Another option for exporting
enables you to reimport the data into BERTool later.

BERTool also enables you to save an entire session, which is useful if your
session contains multiple data sets that you want to return to in a later
session.

4-49

4 BERTool: A Bit Error Rate Analysis GUI

This section describes these capabilities, in these topics:

• “Exporting Data Sets” on page 4-50

• “Examining an Exported Structure” on page 4-51

• “Saving a BERTool Session” on page 4-52

Exporting Data Sets
To export an individual data set, follow these steps:

1 In the data viewer, select the data set you want to export.

2 Choose Export Data from the File menu.

3 Set Export to to indicate the format and destination of the data.

a If you want to reimport the data into BERTool later, then you must
choose either Workspace structure or MAT-file structure to create a
structure in the MATLAB workspace or a MAT-file, respectively.

A new field called Structure name appears. Set it to the name that you
want BERTool to use for the structure it creates.

If you selected Workspace structure and you want BERTool to use your
chosen variable name even if a variable by that name already exists in
the workspace, then check Overwrite variables.

b If you do not need to reimport the data into BERTool later, then a
convenient way to access the data outside BERTool is to have BERTool
create a pair of arrays in the MATLAB workspace. One array contains
Eb/N0 values, while the other contains BER values. To choose this option,
set Export to to Workspace arrays.

4-50

Managing BER Data

Then type two variable names in the fields under Variable names.

If you want BERTool to use your chosen variable names even if variables
by those names already exist in the workspace, then check Overwrite
variables.

4 Click OK. If you selected MAT-file structure, then BERTool prompts you
for the path to the MAT-file that you want to create.

To reimport a structure later, see “Importing Data Sets” on page 4-53.

Examining an Exported Structure
This section briefly describes the contents of the structure that BERTool
exports to the workspace or to a MAT-file. The structure’s fields are indicated
in the table below. The fields that are most relevant for you when you want to
manipulate exported data are paramsEvaled and data.

Name of Field Significance

params The parameter values in the
BERTool GUI, some of which might
be invisible and hence irrelevant for
computations.

paramsEvaled The parameter values that BERTool
uses when computing the data set.

data The Eb/N0, BER, and number of bits
processed.

dataView Information about the appearance in
the data viewer. Used by BERTool
for data reimport.

cellEditabilities Indicates whether the data viewer
has an active Confidence Level or
Fit entry. Used by BERTool for data
reimport.

4-51

4 BERTool: A Bit Error Rate Analysis GUI

Parameter Fields. The params and paramsEvaled fields are similar to
each other, except that params describes the exact state of the GUI whereas
paramsEvaled indicates the values that are actually used for computations.
As an example of the difference, for a theoretical system with an AWGN
channel, params records but paramsEvaled omits a diversity order parameter.
The diversity order is not used in the computations because it is relevant only
for systems with Rayleigh channels. As another example, if you type [0:3]+1
in the GUI as the range of Eb/N0 values, then params indicates [0:3]+1 while
paramsEvaled indicates 1 2 3 4.

The length and exact contents of paramsEvaled depend on the data set
because only relevant information appears. If the meaning of the contents
of paramsEvaled is not clear upon inspection, then one way to learn more
is to reimport the data set into BERTool and inspect the parameter values
that appear in the GUI. To reimport the structure, follow the instructions in
“Importing Data Sets or BERTool Sessions” on page 4-53.

Data Field. If your exported workspace variable is called ber0, then the field
ber0.data is a cell array that contains the numerical results in these vectors:

• ber0.data{1} lists the Eb/N0 values.

• ber0.data{2} lists the BER values corresponding to each of the Eb/N0
values.

• ber0.data{3} indicates, for simulation or semianalytic results, how many
bits BERTool processed when computing each of the corresponding BER
values.

Saving a BERTool Session
To save an entire BERTool session, follow these steps:

1 Choose Save Session from the File menu.

2 When BERTool prompts you, enter the path to the file that you want to
create.

BERTool creates a text file that records all data sets currently in the data
viewer, along with the GUI parameters associated with the data sets.

4-52

Managing BER Data

Note If your BERTool session requires particular workspace variables (such
as txsig or rxsig for the Semianalytic panel), then you should save those
separately in a MAT-file using the save command in MATLAB.

Importing Data Sets or BERTool Sessions
BERTool enables you to reimport individual data sets that you previously
exported to a structure, or to reload entire sessions that you previously saved.
This section describes these capabilities, in these topics:

• “Importing Data Sets” on page 4-53

• “Opening a Previous BERTool Session” on page 4-54

To learn more about how to export data sets or save sessions from BERTool,
see “Exporting Data Sets or BERTool Sessions” on page 4-49.

Importing Data Sets
To import an individual data set that you previously exported from BERTool
to a structure, follow these steps:

1 Choose Import Data from the File menu.

2 Set Import from to either Workspace structure or MAT-file structure.
If you selected Workspace structure, then type the name of the workspace
variable in the Structure name field.

3 Click OK. If you selected MAT-file, then BERTool prompts you to select the
file that contains the structure you want to import.

After you dismiss the Data Import dialog (and the file selection dialog, in the
case of a MAT-file), the data viewer shows the newly imported data set and
the BER Figure window plots it.

4-53

4 BERTool: A Bit Error Rate Analysis GUI

Opening a Previous BERTool Session
To replace the data sets in the data viewer with data sets from a previous
BERTool session, follow these steps:

1 Choose Open Session from the File menu.

Note If BERTool already contains data sets, then it asks you whether you
want to save the current session. If you answer no and continue with the
loading process, then BERTool discards the current session upon opening
the new session from the file.

2 When BERTool prompts you, enter the path to the file that you want to
open. It must be a file that you previously created using the Save Session
option in BERTool.

After BERTool reads the session file, the data viewer shows the data sets
from the file.

If your BERTool session requires particular workspace variables (such as
txsig or rxsig for the Semianalytic panel) that you saved separately in a
MAT-file, then you can retrieve them using the load command in MATLAB.

Managing Data in the Data Viewer
The data viewer gives you flexibility to rename and delete data sets, and to
reorder columns in the data viewer.

• To rename a data set in the data viewer, double-click its name in the BER
Data Set column and type a new name.

• To delete a data set from the data viewer, select it and choose Delete from
the Edit menu.

4-54

Managing BER Data

Note If the data set originated from the Semianalytic or Theoretical
panel, then BERTool deletes the data without asking for confirmation. You
cannot undo this operation.

• To move a column in the data viewer, drag the column’s heading to the left
or right with the mouse. For example, the image below shows the mouse
dragging the BER column to the left of its default position. When you
release the mouse button, the columns snap into place.

4-55

4 BERTool: A Bit Error Rate Analysis GUI

4-56

5

Source Coding

Source coding, also known as quantization or signal formatting, is a way
of processing data in order to reduce redundancy or prepare it for later
processing. Analog-to-digital conversion and data compression are two
categories of source coding.

This chapter describes the source coding features of the Communications
Toolbox, in the sections listed below.

“Quantizing a Signal” (p. 5-2) Quantizing a signal according to a
partition and codebook

“Optimizing Quantization
Parameters” (p. 5-6)

Optimizing partition and codebook
parameters for a set of training data

“Differential Pulse Code Modulation”
(p. 5-7)

Encoding or decoding a signal using
the DPCM technique

“Optimizing DPCM Parameters” (p.
5-10)

Optimizing DPCM parameters for a
set of training data

“Companding a Signal” (p. 5-12) Performing µ-law or A-law
compressor or expander calculations

“Huffman Coding” (p. 5-14) Performing Huffman coding and
decoding

“Arithmetic Coding” (p. 5-16) Performing arithmetic coding and
decoding

“Selected Bibliography for Source
Coding” (p. 5-17)

Works containing background
information about source coding

This toolbox does not support vector quantization.

5 Source Coding

Quantizing a Signal
Scalar quantization is a process that maps all inputs within a specified
range to a common value. It maps inputs in a different range of values to a
different common value. In effect, scalar quantization digitizes an analog
signal. Two parameters determine a quantization: a partition and a codebook.
This section describes how to represent these parameters. It also shows, via
examples, how to use the partition and codebook with the quantiz function.

Representing Partitions
A quantization partition defines several contiguous, nonoverlapping ranges of
values within the set of real numbers. To specify a partition in MATLAB, list
the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}

• {x: 0< x ≤ 1}

• {x: 1 < x ≤ 3}

• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

Notice that the length of the partition vector is one less than the number
of partition intervals.

Representing Codebooks
A codebook tells the quantizer which common value to assign to inputs that
fall into each range of the partition. Represent a codebook as a vector whose
length is the same as the number of partition intervals. For example, the
vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

5-2

Quantizing a Signal

Scalar Quantization Example 1
The code below shows how the quantiz function uses partition and codebook
to map a real vector, samp, to a new vector, quantized, whose entries are
either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

The output is below.

quantized =

Columns 1 through 6

-1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

Columns 7 through 12

2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

Column 13

3.0000

Scalar Quantization Example 2
This example illustrates the nature of scalar quantization more clearly. After
quantizing a sampled sine wave, it plots the original and quantized signals.
The plot contrasts the x’s that make up the sine curve with the dots that
make up the quantized signal. The vertical coordinate of each dot is a value in
the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')

5-3

5 Source Coding

legend('Original signal','Quantized signal');
axis([-.2 7 -1.2 1.2])

Determining Which Interval Each Input Is In
The quantiz function also returns a vector that tells which interval each
input is in. For example, the output below says that the input entries lie
within the intervals labeled 0, 6, and 5, respectively. Here, the 0th interval
consists of real numbers less than or equal to 3; the 6th interval consists of
real numbers greater than 8 but less than or equal to 9; and the 5th interval
consists of real numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

0
6
5

5-4

Quantizing a Signal

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal
quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you
instead phrase the example more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

5-5

5 Source Coding

Optimizing Quantization Parameters
Quantization distorts a signal. You can lessen the distortion by choosing
appropriate partition and codebook parameters. However, testing and
selecting parameters for large signal sets with a fine quantization scheme can
be tedious. One way to produce partition and codebook parameters easily is to
optimize them according to a set of so-called training data.

Note The training data that you use should be typical of the kinds of signals
that you will actually be quantizing.

Example: Optimizing Quantization Parameters
The lloyds function optimizes the partition and codebook according to the
Lloyd algorithm. The code below optimizes the partition and codebook for one
period of a sinusoidal signal, starting from a rough initial guess. Then it
uses these parameters to quantize the original signal using the initial guess
parameters as well as the optimized parameters. The output shows that
the mean square distortion after quantizing is much less for the optimized
parameters. Notice that the quantiz function automatically computes the
mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is

ans =

0.0148 0.0024

5-6

Differential Pulse Code Modulation

Differential Pulse Code Modulation
The quantization in the section “Quantizing a Signal” on page 5-2 requires
no a priori knowledge about the transmitted signal. In practice, you can
often make educated guesses about the present signal based on past signal
transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization
method is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a
DPCM predictive quantizer with a linear predictor.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a
partition and codebook as described in “Representing Partitions” on page 5-2
and “Representing Codebooks” on page 5-2, but also a predictor. The predictor
is a function that the DPCM encoder uses to produce the educated guess at
each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and
p is an m-tuple of real numbers. Instead of quantizing x itself, the DPCM
encoder quantizes the predictive error, x-y. The integer m above is called the
predictive order. The special case when m = 1 is called delta modulation.

Representing Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

5-7

5 Source Coding

Note The initial zero in the predictor vector makes sense if you view the
vector as the polynomial transfer function of a finite impulse response (FIR)
filter.

Example: DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal’s
current value and its value at the previous step. Thus the predictor is just
y(k) = x (k - 1). The code below implements this scheme. It encodes a
sawtooth signal, decodes it, and plots both the original and decoded signals.
The solid line is the original signal, while the dashed line is the recovered
signals. The example also computes the mean square error between the
original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

0.0327

5-8

Differential Pulse Code Modulation

5-9

5 Source Coding

Optimizing DPCM Parameters
The section “Optimizing Quantization Parameters” on page 5-6 describes how
you can use training data with the lloyds function to help find quantization
parameters that will minimize signal distortion. This section describes
similar procedures for using the dpcmopt function in conjunction with the two
functions dpcmenco and dpcmdeco, which first appear in the previous section.

Note The training data that you use with dpcmopt should be typical of the
kinds of signals that you will actually be quantizing with dpcmenco.

Example: Comparing Optimized and Nonoptimized
DPCM Parameters
This example is similar to the one in the last section. However, whereas
the last example created predictor, partition, and codebook in a
straightforward but haphazard way, this example uses the same codebook
(now called initcodebook) as an initial guess for a new optimized codebook
parameter. This example also uses the predictive order, 1, as the desired
order of the new optimized predictor. The dpcmopt function creates these
optimized parameters, using the sawtooth signal x as training data. The
example goes on to quantize the training data itself; in theory, the optimized
parameters are suitable for quantizing other data that is similar to x. Notice
that the mean square distortion here is much less than the distortion in
the previous example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error

5-10

Optimizing DPCM Parameters

The output is

distor =

0.0063

5-11

5 Source Coding

Companding a Signal
In certain applications, such as speech processing, it is common to use a
logarithm computation, called a compressor, before quantizing. The inverse
operation of a compressor is called an expander. The combination of a
compressor and expander is called a compander.

The compand function supports two kinds of companders: µ-law and A-law
companders. Its reference page lists both compressor laws.

Example: A µ-Law Compander
The code below quantizes an exponential signal in two ways and compares the
resulting mean square distortions. First, it uses the quantiz function with a
partition consisting of length-one intervals. In the second trial, compand
implements a µ-law compressor, quantiz quantizes the compressed data,
and finally compand expands the quantized data. The output shows that the
distortion is smaller for the second scheme. This is because equal-length
intervals are well suited to the logarithm of sig, but not well suited to sig.
The figure shows how the compander changes sig.

Mu = 255; % Parameter for mu-law compander
sig = -4:.1:4;
sig = exp(sig); % Exponential signal to quantize
V = max(sig);
% 1. Quantize using equal-length intervals and no compander.
[index,quants,distor] = quantiz(sig,0:floor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress
% before quantizing and expand afterwards.
compsig = compand(sig,Mu,V,'mu/compressor');
[index,quants] = quantiz(compsig,0:floor(V),0:ceil(V));
newsig = compand(quants,Mu,max(quants),'mu/expander');
distor2 = sum((newsig-sig).^2)/length(sig);
[distor, distor2] % Display both mean square distortions.

plot(sig); % Plot original signal.
hold on;
plot(compsig,'r--'); % Plot companded signal.
legend('Original','Companded','Location','NorthWest')

5-12

Companding a Signal

The output and figure are below.

ans =

0.5348 0.0397

5-13

5 Source Coding

Huffman Coding
Huffman coding offers a way to compress data. The average length of a
Huffman code depends on the statistical frequency with which the source
produces each symbol from its alphabet. A Huffman code dictionary, which
associates each data symbol with a codeword, has the property that no
codeword in the dictionary is a prefix of any other codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support Huffman
coding and decoding.

Note For long sequences from sources having skewed distributions and
small alphabets, arithmetic coding compresses better than Huffman coding.
To learn how to use arithmetic coding, see “Arithmetic Coding” on page 5-16.

Creating a Huffman Code Dictionary
Huffman coding requires statistical information about the source of the data
being encoded. In particular, the p input argument in the huffmandict
function lists the probability with which the source produces each symbol
in its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s
with probability 0.1, and 3s with probability 0.8. The main computational
step in encoding data from this source using a Huffman code is to create a
dictionary that associates each data symbol with a codeword. The commands
below create such a dictionary and then show the codeword vector associated
with a particular value from the data source.

symbols = [1 2 3]; % Data symbols
p = [0.1 0.1 0.8]; % Probability of each data symbol
dict = huffmandict(symbols,p) % Create the dictionary.
dict{1,:} % Show one row of the dictionary.

The output below shows that the most probable data symbol, 3, is associated
with a one-digit codeword, while less probable data symbols are associated
with two-digit codewords. The output also shows, for example, that a Huffman
encoder receiving the data symbol 1 should substitute the sequence 11.

5-14

Huffman Coding

dict =

[1] [1x2 double]
[2] [1x2 double]
[3] [0]

ans =

1

ans =

1 1

Example: Creating and Decoding a Huffman Code
The example below performs Huffman encoding and decoding, using a
source whose alphabet has three symbols. Notice that the huffmanenco and
huffmandeco functions use the dictionary that huffmandict created.

sig = repmat([3 3 1 3 3 3 3 3 2 3],1,50); % Data to encode
symbols = [1 2 3]; % Distinct data symbols appearing in sig
p = [0.1 0.1 0.8]; % Probability of each data symbol
dict = huffmandict(symbols,p); % Create the dictionary.
hcode = huffmanenco(sig,dict); % Encode the data.
dhsig = huffmandeco(hcode,dict); % Decode the code.

5-15

5 Source Coding

Arithmetic Coding
Arithmetic coding offers a way to compress data and can be useful for data
sources having a small alphabet. The length of an arithmetic code, instead
of being fixed relative to the number of symbols being encoded, depends on
the statistical frequency with which the source produces each symbol from its
alphabet. For long sequences from sources having skewed distributions and
small alphabets, arithmetic coding compresses better than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and
decoding.

Representing Arithmetic Coding Parameters
Arithmetic coding requires statistical information about the source of the data
being encoded. In particular, the counts input argument in the arithenco
and arithdeco functions lists the frequency with which the source produces
each symbol in its alphabet. You can determine the frequencies by studying a
set of test data from the source. The set of test data can have any size you
choose, as long as each symbol in the alphabet has a nonzero frequency.

For example, before encoding data from a source that produces 10 x’s, 10 y’s,
and 80 z’s in a typical 100-symbol set of test data, define

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x’s, 23
y’s, and 185 z’s, then define

counts = [22 23 185];

Example: Creating and Decoding an Arithmetic Code
The example below performs arithmetic encoding and decoding, using a
source whose alphabet has three symbols.

seq = repmat([3 3 1 3 3 3 3 3 2 3],1,50);
counts = [10 10 80];
code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq));

5-16

Selected Bibliography for Source Coding

Selected Bibliography for Source Coding
[1] Cover, Thomas M., and Joy A. Thomas, Elements of Information Theory,
New York, John Wiley & Sons, 1991.

[2] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons,
1994.

[3] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan
Kaufmann, 2000.

[4] Sklar, Bernard, Digital Communications, Fundamentals and Applications,
Englewood Cliffs, N.J., Prentice-Hall, 1988.

5-17

5 Source Coding

5-18

6

Error-Control Coding

Error-control coding techniques detect and possibly correct errors that occur
when messages are transmitted in a digital communication system. To
accomplish this, the encoder transmits not only the information symbols, but
also one or more redundant symbols. The decoder uses the redundant symbols
to detect and possibly correct whatever errors occurred during transmission.
The sections of this chapter are as follows.

“Block Coding” (p. 6-2) Block coding, including
Reed-Solomon, BCH, cyclic,
Hamming, and generic linear block
coding

“Convolutional Coding” (p. 6-30) Convolutional coding and Viterbi
decoding

6 Error-Control Coding

Block Coding
Block coding is a special case of error-control coding. Block coding techniques
map a fixed number of message symbols to a fixed number of code symbols.
A block coder treats each block of data independently and is a memoryless
device.

Some topics here are relevant only for specific block coding techniques, while
other topics apply to all supported block coding techniques. The table below
suggests which topics you should read based on the coding techniques you
want to use.

Block Coding Technique Relevant Sections

All supported block coding
techniques

• “Block Coding Features of the
Toolbox” on page 6-3

• “Block Coding Terminology” on
page 6-4

• “Performing Other Block Code
Tasks” on page 6-26

• “Selected Bibliography for Block
Coding” on page 6-28

Reed-Solomon • “Representing Words for
Reed-Solomon Codes” on page 6-5

• “Parameters for Reed-Solomon
Codes” on page 6-5

• “Creating and Decoding
Reed-Solomon Codes” on page 6-7

6-2

Block Coding

Block Coding Technique Relevant Sections

BCH • “Representing Words for BCH
Codes” on page 6-11

• “Parameters for BCH Codes” on
page 6-12

• “Creating and Decoding BCH
Codes” on page 6-12

Cyclic, Hamming, and generic linear
block

• “Representing Words for Linear
Block Codes” on page 6-15

• “Parameters for Linear Block
Codes” on page 6-18

• “Creating and Decoding Linear
Block Codes” on page 6-23

Block Coding Features of the Toolbox
The class of linear block coding techniques includes categories shown below.

Linear block codes

Cyclic codes

BCH codes

Hamming codes Reed-Solomon codes

The Communications Toolbox supports general linear block codes. It also
includes functions to process cyclic, BCH, Hamming, and Reed-Solomon codes
(which are all special kinds of linear block codes). Functions in the toolbox
can accomplish these tasks:

6-3

6 Error-Control Coding

• Encode or decode a message using one of the techniques mentioned above

• Determine characteristics of a technique, such as error-correction capability
or valid message length

• Perform lower level computations associated with a technique, such as

- Compute a decoding table

- Compute a generator or parity-check matrix

- Convert between generator and parity-check matrices

- Compute a generator polynomial

Note The functions in this toolbox are designed for block codes that use an
alphabet whose size is a power of 2.

The table below lists the functions that are related to each supported block
coding technique.

Block Coding Technique Toolbox Functions

Linear block encode, decode, gen2par, syndtable

Cyclic encode, decode, cyclpoly, cyclgen,
gen2par, syndtable

BCH bchenc, bchdec, bchgenpoly

Hamming encode, decode, hammgen, gen2par,
syndtable

Reed-Solomon rsenc, rsdec, rsgenpoly, rsencof,
rsdecof

Block Coding Terminology
Throughout this section, the information to be encoded consists of a sequence
of message symbols and the code that is produced consists of a sequence of
codewords.

6-4

Block Coding

Each block of k message symbols is encoded into a codeword that consists of
n symbols; in this context, k is called the message length, n is called the
codeword length, and the code is called an [n,k] code.

Representing Words for Reed-Solomon Codes
This toolbox supports Reed-Solomon codes that use m-bit symbols instead of
bits. A message for an [n,k] Reed-Solomon code must be a k-column Galois
array in the field GF(2m). Each array entry must be an integer between 0 and
2m-1. The code corresponding to that message is an n-column Galois array in
GF(2m). The codeword length n must be between 3 and 2m-1.

Note For information about Galois arrays and how to create them, see
“Representing Elements of Galois Fields” on page 12-4 or the reference page
for the gf function.

The example below illustrates how to represent words for a [7,3] Reed-Solomon
code.

n = 7; k = 3; % Codeword length and message length
m = 3; % Number of bits in each symbol
msg = gf([1 6 4; 0 4 3],m); % Message is a Galois array.
c = rsenc(msg,n,k) % Code will be a Galois array.

The output is

c = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1 6 4 4 3 6 3
0 4 3 3 7 4 7

Parameters for Reed-Solomon Codes
This section describes several integers related to Reed-Solomon codes and
discusses how to find generator polynomials.

6-5

6 Error-Control Coding

Allowable Values of Integer Parameters
The table below summarizes the meanings and allowable values of some
positive integer quantities related to Reed-Solomon codes as supported in
this toolbox. The quantities n and k are input parameters for Reed-Solomon
functions in this toolbox.

Symbol Meaning Value or Range

m Number of bits per
symbol

Integer between 3 and
16

n Number of symbols per
codeword

Integer between 3 and
2m-1

k Number of symbols per
message

Positive integer less
than n, such that n-k is
even

t Error-correction
capability of the code

(n-k)/2

Generator Polynomial
The rsgenpoly function produces generator polynomials for Reed-Solomon
codes. It is useful if you want to use rsenc and rsdec with a generator
polynomial other than the default, or if you want to examine or manipulate a
generator polynomial. rsgenpoly represents a generator polynomial using a
Galois row vector that lists the polynomial’s coefficients in order of descending
powers of the variable. If each symbol has m bits, then the Galois row vector
is in the field GF(2m). For example, the command

r = rsgenpoly(15,13)

r = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

1 6 8

6-6

Block Coding

finds that one generator polynomial for a [15,13] Reed-Solomon code is
X2 + (A2 + A)X + (A3), where A is a root of the default primitive polynomial
for GF(16).

Algebraic Expression for Generator Polynomials. The
generator polynomials that rsgenpoly produces have the form
(X - Ab)(X - Ab+1)...(X - Ab+2t-1), where b is an integer, A is a root of the primitive
polynomial for the Galois field, and t is (n-k)/2. The default value of b is
1. The output from rsgenpoly is the result of multiplying the factors and
collecting like powers of X. The example below checks this formula for the
case of a [15,13] Reed-Solomon code, using b = 1.

n = 15;
a = gf(2,log2(n+1)); % Root of primitive polynomial
f1 = [1 a]; f2 = [1 a^2]; % Factors that form generator polynomial
f = conv(f1,f2) % Generator polynomial, same as r above.

Creating and Decoding Reed-Solomon Codes
The rsenc and rsdec functions create and decode Reed-Solomon codes, using
the data described in “Representing Words for Reed-Solomon Codes” on page
6-5 and “Parameters for Reed-Solomon Codes” on page 6-5.

This section illustrates how to use rsenc and rsdec. The topics are

• “Example: Reed-Solomon Coding Syntaxes” on page 6-7

• “Example: Detecting and Correcting Errors in a Reed-Solomon Code” on
page 6-9

• “Excessive Noise in Reed-Solomon Codewords” on page 6-10

• “Creating Shortened Reed-Solomon Codes” on page 6-10

Example: Reed-Solomon Coding Syntaxes
The example below illustrates multiple ways to encode and decode data using
a [15,13] Reed-Solomon code. The example shows that you can

• Vary the generator polynomial for the code, using rsgenpoly to produce
a different generator polynomial.

• Vary the primitive polynomial for the Galois field that contains the
symbols, using an input argument in gf.

6-7

6 Error-Control Coding

• Vary the position of the parity symbols within the codewords, choosing
either the end (default) or beginning.

The example also shows that corresponding syntaxes of rsenc and rsdec use
the same input arguments, except for the first input argument.

m = 4; % Number of bits in each symbol
n = 2^m-1; k = 13; % Codeword length and message length
data = randint(4,k,2^m); % Four random integer messages
msg = gf(data,m); % Represent data using a Galois array.

% Simplest syntax for encoding
c1 = rsenc(msg,n,k);
d1 = rsdec(c1,n,k);

% Vary the generator polynomial for the code.
c2 = rsenc(msg,n,k,rsgenpoly(n,k,19,2));
d2 = rsdec(c2,n,k,rsgenpoly(n,k,19,2));

% Vary the primitive polynomial for GF(16).
msg2 = gf(data,m,25);
c3 = rsenc(msg2,n,k);
d3 = rsdec(c3,n,k);

% Prepend the parity symbols instead of appending them.
c4 = rsenc(msg,n,k,'beginning');
d4 = rsdec(c4,n,k,'beginning');

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg) & isequal(d3,msg2) &...
isequal(d4,msg)

The output is

chk =

1

6-8

Block Coding

Example: Detecting and Correcting Errors in a Reed-Solomon
Code
The example below illustrates the decoding results for a corrupted code. The
example encodes some data, introduces errors in each codeword, and invokes
rsdec to attempt to decode the noisy code. It uses additional output arguments
in rsdec to gain information about the success of the decoding process.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Codeword length and message length
t = (n-k)/2; % Error-correction capability of the code
nw = 4; % Number of words to process
msgw = gf(randint(nw,k,2^m),m); % Random k-symbol messages
c = rsenc(msgw,n,k); % Encode the data.
noise = (1+randint(nw,n,2^m-1)).*randerr(nw,n,t); % t errors/row
cnoisy = c + noise; % Add noise to the code.
[dc,nerrs,corrcode] = rsdec(cnoisy,n,k); % Decode the noisy code.
% Check that the decoding worked correctly.
isequal(dc,msgw) & isequal(corrcode,c)
nerrs % Find out how many errors rsdec corrected.

Notice that the array of noise values contains integers between 1 and 2^m, and
that the addition operation c + noise takes place in the Galois field GF(2^m)
because c is a Galois array in GF(2^m).

The output from the example is below. The nonzero value of ans indicates
that the decoder was able to correct the corrupted codewords and recover the
original message. The values in the vector nerrs indicates that the decoder
corrected t errors in each codeword.

ans =

1

nerrs =

2
2
2
2

6-9

6 Error-Control Coding

Excessive Noise in Reed-Solomon Codewords
In the previous example, rsdec corrected all of the errors. However, each
Reed-Solomon code has a finite error-correction capability. If the noise is so
great that the corrupted codeword is too far in Hamming distance from the
correct codeword, then either

• The corrupted codeword is close to a valid codeword other than the correct
codeword. The decoder returns the message that corresponds to the other
codeword.

• The corrupted codeword is not close enough to any codeword for successful
decoding. This situation is called a decoding failure. The decoder removes
the symbols in parity positions from the corrupted codeword and returns
the remaining symbols.

In both cases, the decoder returns the wrong message. However, you can
tell when a decoding failure occurs because rsdec also returns a value of -1
in its second output.

To examine cases in which codewords are too noisy for successful decoding,
change the previous example so that the definition of noise is

noise = (1+randint(nw,n,n)).*randerr(nw,n,t+1); % t+1 errors/row

Creating Shortened Reed-Solomon Codes
Every Reed-Solomon encoder uses a codeword length that equals 2m-1 for an
integer m. A shortened Reed-Solomon code is one in which the codeword
length is not 2m-1. A shortened [n,k] Reed-Solomon code implicitly uses an
[n1,k1] encoder, where

• n1 = 2m - 1, where m is the number of bits per symbol

• k1 = k + (n1 - n)

The rsenc and rsdec functions support shortened codes using the same
syntaxes that they use for nonshortened codes. You do not need to indicate
explicitly that you want to use a shortened code. For example, compare the
two similar-looking commands below. The first creates a (nonshortened) [7,5]
code. The second causes rsenc to create a [5,3] shortened code by implicitly
using a [7,5] encoder.

6-10

Block Coding

m = 3; ordinarycode = rsenc(gf([1 1 1 1 1],m),7,5);
m = 3; shortenedcode = rsenc(gf([1 1 1],m),5,3);

How rsenc Creates a Shortened Code. When creating a shortened code,
rsenc performs these steps:

• Pads each message by prepending zeros

• Encodes each padded message using a Reed-Solomon encoder having an
allowable codeword length and the desired error-correction capability

• Removes the extra zeros from the nonparity symbols of each codeword

The example below illustrates this process. Note that forming a [12,8]
Reed-Solomon code actually uses a [15,11] Reed-Solomon encoder. Also note
that you do not have to indicate in the rsenc syntax that this is a shortened
code or that the proper encoder to use is [15,11].

n = 12; k = 8; % Lengths for the shortened code
m = ceil(log2(n+1)); % Number of bits per symbol
msg = gf(randint(3,k,2^m),m); % Random array of 3 k-symbol words
code = rsenc(msg,n,k); % Create a shortened code.

% Do the shortening manually, just to show how it works.
n_pad = 2^m-1; % Codeword length in the actual encoder
k_pad = k+(n_pad-n); % Message length in the actual encoder
msg_pad=[zeros(3, n_pad-n), msg]; % Prepend zeros to each word.
code_pad = rsenc(msg_pad,n_pad,k_pad); % Encode padded words.
code_eqv = code_pad(:,n_pad-n+1:n_pad); % Remove extra zeros.
ck = isequal(code_eqv,code); % Returns true (1).

Representing Words for BCH Codes
A message for an [n,k] BCH code must be a k-column binary Galois array. The
code that corresponds to that message is an n-column binary Galois array.
Each row of these Galois arrays represents one word.

The example below illustrates how to represent words for a [15, 11] BCH code.

n = 15; k = 5; % Codeword length and message length
msg = gf([1 0 0 1 0; 1 0 1 1 1]); % Two messages in a Galois array
cbch = bchenc(msg,n,k) % Two codewords in a Galois array.

6-11

6 Error-Control Coding

The output is

cbch = GF(2) array.

Array elements =

Columns 1 through 5

1 0 0 1 0
1 0 1 1 1

Columns 6 through 10

0 0 1 1 1
0 0 0 0 1

Columns 11 through 15

1 0 1 0 1
0 1 0 0 1

Parameters for BCH Codes
BCH codes use special values of n and k:

• n, the codeword length, is an integer of the form 2m-1 for some integer m > 2.

• k, the message length, is a positive integer less than n. However, only
some positive integers less than n are valid choices for k. See the bchenc
reference page for a list of some valid values of k corresponding to values
of n up to 511.

Creating and Decoding BCH Codes
The bchenc and bchdec functions create and decode BCH codes, using the
data described in “Representing Words for BCH Codes” on page 6-11 and
“Parameters for BCH Codes” on page 6-12. This section illustrates how to use
bchenc and bchdec.

6-12

Block Coding

The topics are

• “Example: BCH Coding Syntaxes” on page 6-13

• “Example: Detecting and Correcting Errors in a BCH Code” on page 6-13

Example: BCH Coding Syntaxes
The example below illustrates how to encode and decode data using a [15, 5]
Reed-Solomon code. The example shows that

• You can vary the position of the parity symbols within the codewords,
choosing either the end (default) or beginning.

• Corresponding syntaxes of bchenc and bchdec use the same input
arguments, except for the first input argument.

n = 15; k = 5; % Codeword length and message length
dat = randint(4,k); % Four random binary messages
msg = gf(dat); % Represent data using a Galois array.

% Simplest syntax for encoding
c1 = bchenc(msg,n,k);
d1 = bchdec(c1,n,k);

% Prepend the parity symbols instead of appending them.
c2 = bchenc(msg,n,k,'beginning');
d2 = bchdec(c2,n,k,'beginning');

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg)

The output is below.

chk =

1

Example: Detecting and Correcting Errors in a BCH Code
The example below illustrates the decoding results for a corrupted code.
The example encodes some data, introduces errors in each codeword, and
invokes bchdec to attempt to decode the noisy code. It uses additional output

6-13

6 Error-Control Coding

arguments in bchdec to gain information about the success of the decoding
process.

n = 15; k = 5; % Codeword length and message length
[gp,t] = bchgenpoly(n,k); % t is error-correction capability.
nw = 4; % Number of words to process
msgw = gf(randint(nw,k)); % Random k-symbol messages
c = bchenc(msgw,n,k); % Encode the data.
noise = randerr(nw,n,t); % t errors/row
cnoisy = c + noise; % Add noise to the code.
[dc,nerrs,corrcode] = bchdec(cnoisy,n,k); % Decode cnoisy.

% Check that the decoding worked correctly.
chk2 = isequal(dc,msgw) & isequal(corrcode,c)
nerrs % Find out how many errors bchdec corrected.

Notice that the array of noise values contains binary values, and that the
addition operation c + noise takes place in the Galois field GF(2) because c
is a Galois array in GF(2).

The output from the example is below. The nonzero value of ans indicates
that the decoder was able to correct the corrupted codewords and recover the
original message. The values in the vector nerrs indicate that the decoder
corrected t errors in each codeword.

chk2 =

1

nerrs =

3 3 3 3

Excessive Noise in BCH Codewords. In the previous example, bchdec
corrected all the errors. However, each BCH code has a finite error-correction
capability. To learn more about how bchdec behaves when the noise is
excessive, see the analogous discussion for Reed-Solomon codes in “Excessive
Noise in Reed-Solomon Codewords” on page 6-10.

6-14

Block Coding

Representing Words for Linear Block Codes
The cyclic, Hamming, and generic linear block code functionality in this
toolbox offers you multiple ways to organize bits in messages or codewords.
These topics explain the available formats:

• “Binary Vector Format” on page 6-15

• “Binary Matrix Format” on page 6-17

• “Decimal Vector Format” on page 6-17

To learn how to represent words for BCH or Reed-Solomon codes, see
“Representing Words for BCH Codes” on page 6-11 or “Representing Words for
Reed-Solomon Codes” on page 6-5.

Binary Vector Format
Your messages and codewords can take the form of vectors containing 0s
and 1s. For example, messages and codes might look like msg and code in
the lines below.

n = 6; k = 4; % Set codeword length and message length
% for a [6,4] code.
msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.
code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'
code'

6-15

6 Error-Control Coding

The output is below.

ans =

Columns 1 through 5

1 0 0 1 1

Columns 6 through 10

0 1 0 1 0

Columns 11 through 12

1 1

ans =

Columns 1 through 5

0 0 1 0 0

Columns 6 through 10

1 1 0 1 0

Columns 11 through 15

1 0 0 1 1

Columns 16 through 18

0 1 1

In this example, msg consists of 12 entries, which are interpreted as three
4-digit (because k = 4) messages. The resulting vector code comprises three
6-digit (because n = 6) codewords, which are concatenated to form a vector of
length 18. The parity bits are at the beginning of each codeword.

6-16

Block Coding

Binary Matrix Format
You can organize coding information so as to emphasize the grouping of digits
into messages and codewords. If you use this approach, then each message or
codeword occupies a row in a binary matrix. The example below illustrates
this approach by listing each 4-bit message on a distinct row in msg and each
6-bit codeword on a distinct row in code.

n = 6; k = 4; % Set codeword length and message length.
msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg
code

The output is below.

msg =

1 0 0 1
1 0 1 0
1 0 1 1

code =

0 0 1 0 0 1
1 0 1 0 1 0
0 1 1 0 1 1

Note In the binary matrix format, the message matrix must have k columns.
The corresponding code matrix has n columns. The parity bits are at the
beginning of each row.

Decimal Vector Format
Your messages and codewords can take the form of vectors containing
integers. Each element of the vector gives the decimal representation of the
bits in one message or one codeword.

6-17

6 Error-Control Coding

Note If 2^n or 2^k is very large, then you should use the default binary
format instead of the decimal format. This is because the function uses a
binary format internally, while the roundoff error associated with converting
many bits to large decimal numbers and back might be substantial.

Note When you use the decimal vector format, encode expects the leftmost
bit to be the least significant bit.

The syntax for the encode command must mention the decimal format
explicitly, as in the example below. Notice that /decimal is appended to the
fourth argument in the encode command.

n = 6; k = 4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.
code = encode(msg,n,k,'cyclic/decimal')

The output is below.

code =

36
21
54

Note The three examples above used cyclic coding. The formats for messages
and codes are similar for Hamming and generic linear block codes.

Parameters for Linear Block Codes
This subsection describes the items that you might need in order to process
[n,k] cyclic, Hamming, and generic linear block codes. The table below lists
the items and the coding techniques for which they are most relevant.

6-18

Block Coding

Parameters Used in Block Coding Techniques

Parameter Block Coding Technique

“Generator Matrix” on page 6-19 Generic linear block

“Parity-Check Matrix” on page 6-19 Generic linear block

“Generator Polynomial” on page 6-21 Cyclic

“Decoding Table” on page 6-22 Generic linear block, Hamming

Generator Matrix
The process of encoding a message into an [n,k] linear block code is
determined by a k-by-n generator matrix G. Specifically, the 1-by-k message
vector v is encoded into the 1-by-n codeword vector vG. If G has the form
[Ik P] or [P Ik], where P is some k-by-(n-k) matrix and Ik is the k-by-k identity
matrix, then G is said to be in standard form. (Some authors, e.g., Clark and
Cain [2], use the first standard form, while others, e.g., Lin and Costello
[3], use the second.) Most functions in this toolbox assume that a generator
matrix is in standard form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check
Matrix” on page 6-19

Parity-Check Matrix
Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix
H. It satisfies GHtr = 0 (mod 2), where Htr denotes the matrix transpose of H, G
is the code’s generator matrix, and this zero matrix is k-by-(n-k). If G = [Ik P]
then H = [-Ptr In-k]. Most functions in this toolbox assume that a parity-check
matrix is in standard form when you use it as an input argument.

The table below summarizes the standard forms of the generator and
parity-check matrices for an [n,k] binary linear block code.

6-19

6 Error-Control Coding

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

Ik is the identity matrix of size k and the ' symbol indicates matrix transpose.
(For binary codes, the minus signs in the parity-check form listed above are
irrelevant; that is, -1 = 1 in the binary field.)

Examples. In the command below, parmat is a parity-check matrix
and genmat is a generator matrix for a Hamming code in which
[n,k] = [23-1, n-3] = [7,4]. Notice that genmat has the standard form [P Ik].

[parmat,genmat] = hammgen(3)
parmat =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

genmat =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic
code. The cyclpoly function is mentioned below in “Generator Polynomial”
on page 6-21.

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)
parmat =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1

6-20

Block Coding

0 0 0 1 1 0 1

genmat =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

The example below converts a generator matrix for a [5,3] linear block code
into the corresponding parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];
parmat = gen2par(genmat)

parmat =

1 1 0 1 0
0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a
generator matrix.

Generator Polynomial
Cyclic codes have algebraic properties that allow a polynomial to determine
the coding process completely. This so-called generator polynomial is a
degree-(n-k) divisor of the polynomial xn-1. Van Lint [5] explains how a
generator polynomial determines a cyclic code.

The cyclpoly function produces generator polynomials for cyclic codes.
cyclpoly represents a generator polynomial using a row vector that lists
the polynomial’s coefficients in order of ascending powers of the variable.
For example, the command

genpoly = cyclpoly(7,3)

genpoly =

1 0 1 1 1

6-21

6 Error-Control Coding

finds that one valid generator polynomial for a [7,3] cyclic code is
1 + x2 + x3 + x4.

Decoding Table
A decoding table tells a decoder how to correct errors that might have
corrupted the code during transmission. Hamming codes can correct any
single-symbol error in any codeword. Other codes can correct, or partially
correct, errors that corrupt more than one symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and
2^(n-k) rows. Each row gives a correction vector for one received codeword
vector. A Hamming decoding table has n+1 rows. The syndtable function
generates a decoding table for a given parity-check matrix.

Example: Using a Decoding Table. The script below shows how to use
a Hamming decoding table to correct an error in a received message. The
hammgen function produces the parity-check matrix, while the syndtable
function produces the decoding table. The transpose of the parity-check matrix
is multiplied on the left by the received codeword, yielding the syndrome. The
decoding table helps determine the correction vector. The corrected codeword
is the sum (modulo 2) of the correction vector and the received codeword.

% Use a [7,4] Hamming code.
m = 3; n = 2^m-1; k = n-m;
parmat = hammgen(m); % Produce parity-check matrix.
trt = syndtable(parmat); % Produce decoding table.
recd = [1 0 0 1 1 1 1] % Suppose this is the received vector.
syndrome = rem(recd * parmat',2);
syndrome_de = bi2de(syndrome,'left-msb'); % Convert to decimal.
disp(['Syndrome = ',num2str(syndrome_de),...

' (decimal), ',num2str(syndrome),' (binary)'])
corrvect = trt(1+syndrome_de,:) % Correction vector
% Now compute the corrected codeword.
correctedcode = rem(corrvect+recd,2)

The output is below.

recd =

1 0 0 1 1 1 1

6-22

Block Coding

Syndrome = 3 (decimal), 0 1 1 (binary)

corrvect =

0 0 0 0 1 0 0

correctedcode =

1 0 0 1 0 1 1

Creating and Decoding Linear Block Codes
The functions for encoding and decoding cyclic, Hamming, and generic linear
block codes are encode and decode. This section discusses how to use these
functions to create and decode generic linear block codes, cyclic codes, and
Hamming codes.

Generic Linear Block Codes
Encoding a message using a generic linear block code requires a generator
matrix. If you have defined variables msg, n, k, and genmat, then either of the
commands

code = encode(msg,n,k,'linear',genmat);
code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix
genmat determines. The /decimal option, suitable when 2^n and 2^k are not
very large, indicates that msg contains nonnegative decimal integers rather
than their binary representations. See “Representing Words for Linear Block
Codes” on page 6-15 or the reference page for encode for a description of
the formats of msg and code.

Decoding the code requires the generator matrix and possibly a decoding
table. If you have defined variables code, n, k, genmat, and possibly also trt,
then the commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);

6-23

6 Error-Control Coding

newmsg = decode(code,n,k,'linear',genmat,trt);
newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in
the decoding table that trt represents.

Example: Generic Linear Block Coding. The example below encodes a
message, artificially adds some noise, decodes the noisy code, and keeps track
of errors that the decoder detects along the way. Because the decoding table
contains only zeros, the decoder does not correct any errors.

n = 4; k = 2;
genmat = [[1 1; 1 0], eye(2)]; % Generator matrix
msg = [0 1; 0 0; 1 0]; % Three messages, two bits each
% Create three codewords, four bits each.
code = encode(msg,n,k,'linear',genmat);
noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2^(n-k),n); % No correction of errors
% Decode, keeping track of all detected errors.
[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your
results might vary because this example uses random numbers as errors.

err_words =

1
2

Cyclic Codes
A cyclic code is a linear block code with the property that cyclic shifts of a
codeword (expressed as a series of bits) are also codewords. An alternative
characterization of cyclic codes is based on its generator polynomial, as
mentioned in “Generator Polynomial” on page 6-21and discussed in [5].

Encoding a message using a cyclic code requires a generator polynomial. If you
have defined variables msg, n, k, and genpoly, then either of the commands

6-24

Block Coding

code = encode(msg,n,k,'cyclic',genpoly);
code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the
generator polynomial genpoly. genpoly is an optional argument for encode.
The default generator polynomial is cyclpoly(n,k). The /decimal option,
suitable when 2^n and 2^k are not very large, indicates that msg contains
nonnegative decimal integers rather than their binary representations. See
“Representing Words for Linear Block Codes” on page 6-15 or the reference
page for encode for a description of the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding
table. If you have defined variables code, n, k, genpoly, and trt, then the
commands

newmsg = decode(code,n,k,'cyclic',genpoly);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly);
newmsg = decode(code,n,k,'cyclic',genpoly,trt);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in the
decoding table that trt represents. genpoly is an optional argument in the
first two syntaxes above. The default generator polynomial is cyclpoly(n,k).

Example. You can modify the example in the section “Generic Linear Block
Codes” on page 6-23 so that it uses the cyclic coding technique, instead of
the linear block code with the generator matrix genmat. Make the changes
listed below:

• Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x^2

• In the fifth and ninth lines (encode and decode commands), replace genmat
by genpoly and replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference
page for encode.

6-25

6 Error-Control Coding

Hamming Codes
The reference pages for encode and decode contain examples of encoding and
decoding Hamming codes. Also, the section “Decoding Table” on page 6-22
illustrates error correction in a Hamming code.

Performing Other Block Code Tasks
This section describes functions that compute typical parameters associated
with linear block codes, as well as functions that convert information from
one format to another. The topics are

• “Finding a Generator Polynomial” on page 6-26

• “Finding the Error-Correction Capability” on page 6-27

• “Finding Generator and Parity-Check Matrices” on page 6-28

• “Converting Between Parity-Check and Generator Matrices” on page 6-28

Finding a Generator Polynomial
To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code,
use the cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The
commands

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output
is below.

genpolyCyclic =

1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

1 0 1 0 0 1 1 0 1 1 1

6-26

Block Coding

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector
that lists the polynomial’s coefficients in order of ascending powers of the
variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using
a Galois row vector that lists the polynomial’s coefficients in order of
descending powers of the variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field
GF(2). For more information on the meaning of these coefficients, see
“How Integers Correspond to Galois Field Elements” on page 12-7 and
“Polynomials over Galois Fields” on page 12-30.

Nonuniqueness of Generator Polynomials. Some pairs of message length
and codeword length do not uniquely determine the generator polynomial.
The syntaxes for functions in the example above also include options for
retrieving generator polynomials that satisfy certain constraints that you
specify. See the functions’ reference pages for details about syntax options.

Algebraic Expression for Generator Polynomials. The generator
polynomials produced by bchgenpoly and rsgenpoly have the form
(X - Ab)(X - Ab+1)...(X - Ab+2t-1), where A is a primitive element for an
appropriate Galois field, and b and t are integers. See the functions’ reference
pages for more information about this expression.

Finding the Error-Correction Capability
The bchgenpoly and rsgenpoly functions can return an optional second
output argument that indicates the error-correction capability of a BCH or
Reed-Solomon code. For example, the commands

[g,t] = bchgenpoly(31,16);

6-27

6 Error-Control Coding

t
t =

3

find that a [31, 16] BCH code can correct up to 3 errors in each codeword.

Finding Generator and Parity-Check Matrices
To find a parity-check and generator matrix for a Hamming code with
codeword length 2^m-1, use the hammgen function as below. m must be at
least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen
function. You must provide the codeword length and a valid generator
polynomial. You can use the cyclpoly function to produce one possible
generator polynomial after you provide the codeword length and message
length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

Converting Between Parity-Check and Generator Matrices
The gen2par function converts a generator matrix into a parity-check matrix,
and vice versa. Examples to illustrate this are on the reference page for
gen2par.

Selected Bibliography for Block Coding

[1] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill,
1968.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

6-28

Block Coding

[4] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-correcting Codes, 2nd ed.,
Cambridge, Mass., MIT Press, 1972.

[5] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication and
Storage, Upper Saddle River, N.J., Prentice Hall, 1995.

6-29

6 Error-Control Coding

Convolutional Coding
Convolutional coding is a special case of error-control coding. Unlike a block
coder, a convolutional coder is not a memoryless device. Even though a
convolutional coder accepts a fixed number of message symbols and produces
a fixed number of code symbols, its computations depend not only on the
current set of input symbols but on some of the previous input symbols.

This section

• Outlines the convolutional coding features of the Communications Toolbox

• Defines the two supported ways to describe a convolutional encoder:

- Polynomial description

- Trellis description

• Describes how to encode and decode using the convenc and vitdec functions

• Gives additional examples of convolutional coding

Convolutional Coding Features of the Toolbox
The Communications Toolbox supports feedforward or feedback convolutional
codes that can be described by a trellis structure or a set of generator
polynomials. It uses the Viterbi algorithm to implement hard-decision and
soft-decision decoding.

For background information about convolutional coding, see the works listed
in “Selected Bibliography for Convolutional Coding” on page 6-43.

Polynomial Description of a Convolutional Encoder
A polynomial description of a convolutional encoder describes the connections
among shift registers and modulo-2 adders. For example, the figure below
depicts a feedforward convolutional encoder that has one input, two outputs,
and two shift registers.

6-30

Convolutional Coding

Input

First output

Second output

z-1 z-1

+

+

A polynomial description of a convolutional encoder has either two or three
components, depending on whether the encoder is a feedforward or feedback
type:

• Constraint lengths

• Generator polynomials

• Feedback connection polynomials (for feedback encoders only)

Constraint Lengths
The constraint lengths of the encoder form a vector whose length is the
number of inputs in the encoder diagram. The elements of this vector indicate
the number of bits stored in each shift register, including the current input
bits.

In the figure above, the constraint length is three. It is a scalar because the
encoder has one input stream, and its value is one plus the number of shift
registers for that input.

Generator Polynomials
If the encoder diagram has k inputs and n outputs, then the code generator
matrix is a k-by-n matrix. The element in the ith row and jth column indicates
how the ith input contributes to the jth output.

For systematic bits of a systematic feedback encoder, match the entry in
the code generator matrix with the corresponding element of the feedback
connection vector. See “Feedback Connection Polynomials” on page 6-32
below for details.

6-31

6 Error-Control Coding

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where
a connection line from the shift register feeds into the adder, and a 0
elsewhere. The leftmost spot in the binary number represents the current
input, while the rightmost spot represents the oldest input that still
remains in the shift register.

2 Convert this binary representation into an octal representation by
considering consecutive triplets of bits, starting from the rightmost bit. The
rightmost bit in each triplet is the least significant. If the number of bits is
not a multiple of three, then place zero bits at the left end as necessary.
(For example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower
adders in the figure above are 110 and 111, respectively. These binary
numbers are equivalent to the octal numbers 6 and 7, respectively. Thus the
generator polynomial matrix is [6 7].

Note You can perform the binary-to-octal conversion in MATLAB by using
code like str2num(dec2base(bin2dec('110'),8)).

For a table of some good convolutional code generators, refer to [2] in the
section “Selected Bibliography for Block Coding” on page 6-28, especially
that book’s appendices.

Feedback Connection Polynomials
If you are representing a feedback encoder, then you need a vector of feedback
connection polynomials. The length of this vector is the number of inputs
in the encoder diagram. The elements of this vector indicate the feedback
connection for each input, using an octal format. First build a binary number
representation as in step 1 above. Then convert the binary representation
into an octal representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, then the
code generator and feedback connection parameters corresponding to the
systematic bits must have the same values.

6-32

Convolutional Coding

For example, the diagram below shows a rate 1/2 systematic encoder with
feedback.

z-1 z-1z-1 z-1

Second output

First output (systematic)

Input

1 1 111

1 1 0 1 1

+

+

This encoder has a constraint length of 5, a generator polynomial matrix of
[37 33], and a feedback connection polynomial of 37.

The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits. The feedback
polynomial is represented by the binary vector [1 1 1 1 1], corresponding
to the upper row of binary digits in the diagram. These digits indicate
connections from the outputs of the registers to the adder. Note that the
initial 1 corresponds to the input bit. The octal representation of the binary
number 11111 is 37.

The second generator polynomial is represented by the binary vector [1 1 0
1 1], corresponding to the lower row of binary digits in the diagram. The octal
number corresponding to the binary number 11011 is 33.

Using the Polynomial Description in MATLAB
To use the polynomial description with the functions convenc and vitdec,
first convert it into a trellis description using the poly2trellis function.
For example, the command below computes the trellis description of the
encoder pictured in the section “Polynomial Description of a Convolutional
Encoder” on page 6-30.

trellis = poly2trellis(3,[6 7]);

6-33

6 Error-Control Coding

The MATLAB structure trellis is a suitable input argument for convenc
and vitdec.

Trellis Description of a Convolutional Encoder
A trellis description of a convolutional encoder shows how each possible input
to the encoder influences both the output and the state transitions of the
encoder. This section describes trellises, describes how to represent trellises
in MATLAB, and gives an example of a MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the
previous section. The encoder has four states (numbered in binary from 00 to
11), a one-bit input, and a two-bit output. (The ratio of input bits to output
bits makes this encoder a rate-1/2 encoder.) Each solid arrow shows how the
encoder changes its state if the current input is zero, and each dashed arrow
shows how the encoder changes its state if the current input is one. The octal
numbers above each arrow indicate the current output of the encoder.

State

State transition when input is 0

State transition when input is 1

State

00

01

10

11

00

01

10

11

0
3

1
2

3
0
2
1

As an example of interpreting this trellis diagram, if the encoder is in the 10
state and receives an input of zero, then it outputs the code symbol 3 and
changes to the 01 state. If it is in the 10 state and receives an input of one,
then it outputs the code symbol 0 and changes to the 11 state.

6-34

Convolutional Coding

Note that any polynomial description of a convolutional encoder is equivalent
to some trellis description, although some trellises have no corresponding
polynomial descriptions.

Specifying a Trellis in MATLAB
To specify a trellis in MATLAB, use a specific form of a MATLAB structure
called a trellis structure. A trellis structure must have five fields, as in the
table below.

Fields of a Trellis Structure for a Rate k/n Code

Field in Trellis
Structure

Dimensions Meaning

numInputSymbols Scalar Number of input
symbols to the encoder:
2k

numOutputsymbols Scalar Number of output
symbols from the
encoder: 2n

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2k matrix Next states for all
combinations of current
state and current input

outputs numStates-by-2k matrix Outputs (in decimal)
for all combinations
of current state and
current input

Note While your trellis structure can have any name, its fields must have
the exact names as in the table. Field names are case sensitive.

6-35

6 Error-Control Coding

In the nextStates matrix, each entry is an integer between 0 and
numStates-1. The element in the ith row and jth column denotes the
next state when the starting state is i-1 and the input bits have decimal
representation j-1. To convert the input bits to a decimal value, use the first
input bit as the most significant bit (MSB). For example, the second column
of the nextStates matrix stores the next states when the current set of
input values is {0,...,0,1}. To learn how to assign numbers to states, see the
reference page for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes
the encoder’s output when the starting state is i-1 and the input bits have
decimal representation j-1. To convert to decimal value, use the first output
bit as the MSB.

How to Create a MATLAB Trellis Structure
Once you know what information you want to put into each field, you can
create a trellis structure in any of these ways:

• Define each of the five fields individually, using structurename.fieldname
notation. For example, set the first field of a structure called s using the
command below. Use additional commands to define the other fields.

s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.

• Collect all field names and their values in a single struct command. For
example:

s = struct('numInputSymbols',2,'numOutputSymbols',2,...
'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the
poly2trellis function to convert it to a valid trellis structure. The
polynomial description of a convolutional encoder is described in
“Polynomial Description of a Convolutional Encoder” on page 6-30.

To check whether your structure is a valid trellis structure, use the istrellis
function.

6-36

Convolutional Coding

Example: A MATLAB Trellis Structure
Consider the trellis shown below.

State

State transition when input is 0

State transition when input is 1

State

00

01

10

11

00

01

10

11

0
3

1
2

3
0
2
1

To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types
of input path, the solid arrow and the dashed arrow. The number of output
symbols is 4 because the numbers above the arrows can be either 0, 1, 2, or 3.
The number of states is 4 because there are four bullets on the left side of the
trellis diagram (equivalently, four on the right side). To compute the matrix of
next states, create a matrix whose rows correspond to the four current states
on the left side of the trellis, whose columns correspond to the inputs of 0 and
1, and whose elements give the next states at the end of the arrows on the
right side of the trellis. To compute the matrix of outputs, create a matrix
whose rows and columns are as in the next states matrix, but whose elements
give the octal outputs shown above the arrows in the trellis.

6-37

6 Error-Control Coding

Creating and Decoding Convolutional Codes
The functions for encoding and decoding convolutional codes are convenc and
vitdec. This section discusses using these functions to create and decode
convolutional codes.

Encoding
A simple way to use convenc to create a convolutional code is shown in the
commands below.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.

The first command converts a polynomial description of a feedforward
convolutional encoder to the corresponding trellis description. The second
command encodes 100 bits, or 50 two-bit symbols. Because the code rate in
this example is 2/3, the output vector code contains 150 bits (that is, 100
input bits times 3/2).

Hard-Decision Decoding
To decode using hard decisions, use the vitdec function with the flag 'hard'
and with binary input data. Because the output of convenc is binary,
hard-decision decoding can use the output of convenc directly, without
additional processing. This example extends the previous example and
implements hard decision decoding.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.
tb = 2; % Traceback length for decoding
decoded = vitdec(code,t,tb,'trunc','hard'); % Decode.

Soft-Decision Decoding
To decode using soft decisions, use the vitdec function with the flag 'soft'.
You must also specify the number, nsdec, of soft-decision bits and use input
data consisting of integers between 0 and 2^nsdec-1.

An input of 0 represents the most confident 0, while an input of 2^nsdec-1
represents the most confident 1. Other values represent less confident
decisions. For example, the table below lists interpretations of values for
3-bit soft decisions.

6-38

Convolutional Coding

Input Values for 3-bit Soft Decisions

Input Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1

Example: Soft-Decision Decoding. The script below illustrates decoding
with 3-bit soft decisions. First it creates a convolutional code with convenc
and adds white Gaussian noise to the code with awgn. Then, to prepare for
soft-decision decoding, the example uses quantiz to map the noisy data
values to appropriate decision-value integers between 0 and 7. The second
argument in quantiz is a partition vector that determines which data values
map to 0, 1, 2, etc. The partition is chosen so that values near 0 map to 0, and
values near 1 map to 7. (You can refine the partition to obtain better decoding
performance if your application requires it.) Finally, the example decodes
the code and computes the bit error rate. Notice that when comparing the
decoded data with the original message, the example must take the decoding
delay into account. The continuous operation mode of vitdec causes a delay
equal to the traceback length, so msg(1) corresponds to decoded(tblen+1)
rather than to decoded(1).

msg = randint(4000,1,2,139); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Encode the data.
ncode = awgn(code,6,'measured',244); % Add noise.

% Quantize to prepare for soft-decision decoding.

6-39

6 Error-Control Coding

qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length
decoded = vitdec(qcode,t,tblen,'cont','soft',3); % Decode.

% Compute bit error rate.
[number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay))

The output is below.

number =

5

ratio =

0.0013

Examples of Convolutional Coding
This section contains more examples of convolutional coding:

• The first example determines the correct trellis parameter for its encoder
and then uses it to process a code. The decoding process uses hard decisions
and the continuous operation mode. This operation mode causes a decoding
delay, which the error rate computation takes into account.

• The second example processes a punctured convolutional code. The
decoding process uses the unquantized decision type.

Example: A Rate-2/3 Feedforward Encoder
The example below uses the rate 2/3 feedforward encoder depicted in the
schematic below. The accompanying description explains how to determine
the trellis structure parameter from a schematic of the encoder and then how
to perform coding using this encoder.

6-40

Convolutional Coding

+

+

+

z-1 z-1 z-1 z-1

z-1 z-1 z-1

Second output

Third output

First output

First input

Second input

1 0 0 1 1
1 1 1 0 1

0 1 0 1
1 0 1 1

Determining Coding Parameters. The convenc and vitdec functions can
implement this code if their parameters have the appropriate values.

The encoder’s constraint length is a vector of length 2 because the encoder has
two inputs. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits. Counting memory spaces
in each shift register in the diagram and adding one for the current inputs
leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how
the ith input contributes to the jth output. For example, to compute the
element in the second row and third column, notice that the leftmost and two
rightmost elements in the second shift register of the diagram feed into the
sum that forms the third output. Capture this information as the binary
number 1011, which is equivalent to the octal number 13. The full value of
the code generator matrix is [23 35 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc
and vitdec functions, use the poly2trellis function to convert those
parameters into a trellis structure. The command to do this is below.

6-41

6 Error-Control Coding

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Define trellis.

Using the Encoder. Below is a script that uses this encoder.

len = 1000;
msg = randint(2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Trellis
code = convenc(msg,trel); % Encode the message.
ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = vitdec(ncode,trel,34,'cont','hard'); % Decode.
[number,ratio] = biterr(decoded(68+1:end),msg(1:end-68));

Notice that convenc accepts a vector containing 2-bit symbols and produces a
vector containing 3-bit symbols, while vitdec does the opposite. Also notice
that biterr ignores the first 68 elements of decoded. That is, the decoding
delay is 68, which is the number of bits per symbol (2) of the recovered
message times the traceback depth value (34) in the vitdec function. The
first 68 elements of decoded are 0s, while subsequent elements represent
the decoded messages.

Example: A Punctured Convolutional Code
This example processes a punctured convolutional code. It begins by
generating 3000 random bits and encoding them using a rate-1/2 convolutional
encoder. The resulting vector contains 6000 bits, which are mapped to values
of -1 and 1 for transmission. The puncturing process removes every third value
and results in a vector of length 4000. The punctured code, punctcode, passes
through an additive white Gaussian noise channel. Afterwards, the example
inserts values to reverse the puncturing process. While the puncturing
process removed both -1s and 1s from code, the insertion process inserts zeros.
Then vitdec decodes the vector of -1s, 1s, and 0s using the 'unquant' decision
type. This unquantized decision type is appropriate here for these reasons:

• tcode uses -1 to represent the 1s in code.

• tcode uses 1 to represent the 0s in code.

• The inserted 0s are acceptable for the 'unquant' decision type, which allows
any real values as input.

Finally, the example computes the bit error rate and the number of bit errors.

6-42

Convolutional Coding

len = 3000; msg = randint(len,1,2,94384); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Length is 2*len.
tcode = -2*code+1; % Transmit -1s and 1s.

% Puncture by removing every third value.
punctcode = tcode;
punctcode(3:3:end)=[]; % Length is (2*len)*2/3.

ncode = awgn(punctcode,8,'measured',1234); % Add noise.

% Insert zeros.
nicode = zeros(2*len,1); % Zeros represent inserted data.
nicode(1:3:end) = ncode(1:2:end); % Write actual data.
nicode(2:3:end) = ncode(2:2:end); % Write actual data.

decoded = vitdec(nicode,t,96,'trunc','unquant'); % Decode.
[number,ratio]=biterr(decoded,msg); % Bit error rate

Selected Bibliography for Convolutional Coding

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum Press, 1992.

6-43

6 Error-Control Coding

6-44

7

Interleaving

An interleaver permutes symbols according to a mapping. A corresponding
deinterleaver uses the inverse mapping to restore the original sequence of
symbols. Interleaving and deinterleaving can be useful for reducing errors
caused by burst errors in a communication system. This chapter describes
the interleaving features of the Communications Toolbox, in the sections
listed below.

“Block Interleavers” (p. 7-2) Using block interleavers, including
matrix, random, algebraic, and
helical scan interleavers

“Convolutional Interleavers” (p. 7-5) Using convolutional interleavers,
including helical interleavers

“Selected Bibliography for
Interleaving” (p. 7-14)

Works containing background
information about interleaving

Each interleaver function in this toolbox has a corresponding deinterleaver
function. In typical usage of the interleaver/deinterleaver pairs, the inputs of
the deinterleaver match those of the interleaver, except for the data being
rearranged.

7 Interleaving

Block Interleavers
A block interleaver accepts a set of symbols and rearranges them, without
repeating or omitting any of the symbols in the set. The number of symbols in
each set is fixed for a given interleaver.

Block Interleaving Features of the Toolbox
The set of block interleavers in this toolbox includes a general block
interleaver as well as several special cases. Each special-case interleaver
function uses the same computational code that the general block interleaver
function uses, but provides a syntax that is more suitable for the special case.
The interleaver functions are described below.

Type of
Interleaver

Interleaver Function Description

General block
interleaver

intrlv Uses the permutation table
given explicitly as an input
argument.

Algebraic
interleaver

algintrlv Derives a permutation
table algebraically, using
the Takeshita-Costello
or Welch-Costas method.
These methods are described
in [4].

Helical scan
interleaver

helscanintrlv Fills a matrix with data
row by row and then sends
the matrix contents to the
output in a helical fashion.

Matrix
interleaver

matintrlv Fills a matrix with data
elements row by row and
then sends the matrix
contents to the output
column by column.

Random
interleaver

randintrlv Chooses a permutation table
randomly using the initial
state input that you provide.

7-2

Block Interleavers

Example: Block Interleavers
The following example illustrates how an interleaver improves the error rate
in a communication system whose channel produces a burst of errors. A
random interleaver rearranges the bits of numerous codewords before two
adjacent codewords are each corrupted by three errors.

Three errors exceed the error-correction capability of the Hamming code.
However, the example shows that when the Hamming code is combined with
an interleaver, this system is able to recover the original message despite the
6-bit burst of errors. The improvement in performance occurs because the
interleaving effectively spreads the errors among different codewords so that
the number of errors per codeword is within the error-correction capability
of the code.

st1 = 27221; st2 = 4831; % States for random number generator
n = 7; k = 4; % Parameters for Hamming code
msg = randint(k*500,1,2,st1); % Data to encode
code = encode(msg,n,k,'hamming/binary'); % Encoded data
% Create a burst error that will corrupt two adjacent codewords.
errors = zeros(size(code)); errors(n-2:n+3) = [1 1 1 1 1 1];

% With Interleaving
%------------------
inter = randintrlv(code,st2); % Interleave.
inter_err = bitxor(inter,errors); % Include burst error.
deinter = randdeintrlv(inter_err,st2); % Deinterleave.
decoded = decode(deinter,n,k,'hamming/binary'); % Decode.
disp('Number of errors and error rate, with interleaving:');
[number_with,rate_with] = biterr(msg,decoded) % Error statistics

% Without Interleaving
%---------------------
code_err = bitxor(code,errors); % Include burst error.
decoded = decode(code_err,n,k,'hamming/binary'); % Decode.
disp('Number of errors and error rate, without interleaving:');
[number_without,rate_without] = biterr(msg,decoded) % Error statistics

The output from the example is below.

7-3

7 Interleaving

Number of errors and error rate, with interleaving:

number_with =

0

rate_with =

0

Number of errors and error rate, without interleaving:

number_without =

4

rate_without =

0.0020

7-4

Convolutional Interleavers

Convolutional Interleavers
A convolutional interleaver consists of a set of shift registers, each with a
fixed delay. In a typical convolutional interleaver, the delays are nonnegative
integer multiples of a fixed integer (although a general multiplexed
interleaver allows unrestricted delay values). Each new symbol from an
input vector feeds into the next shift register and the oldest symbol in that
register becomes part of the output vector. A convolutional interleaver has
memory; that is, its operation depends not only on current symbols but also
on previous symbols.

The schematic below depicts the structure of a general convolutional
interleaver by showing the set of shift registers and their delay values D(1),
D(2),..., D(N). The kth shift register holds D(k) symbols, where k = 1,2,...,N.
The convolutional interleaving functions in this toolbox have input arguments
that indicate the number of shift registers and the delay for each shift register.

z-D(1)

z-D(2)

z-D(N)

. .
 .

Input Output

This section discusses

• The types of convolutional interleavers included in the toolbox

• An example that uses a convolutional interleaver

• The delay between the original sequence and the restored sequence

7-5

7 Interleaving

Convolutional Interleaving Features of the Toolbox
The set of convolutional interleavers in this toolbox includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case function uses the same computational code that its more general
counterpart uses, but provides a syntax that is more suitable for the special
case. The special cases are described below.

Type of
Interleaver

Interleaving Function Description

General
multiplexed
interleaver

muxintrlv Allows unrestricted delay
values for the set of shift
registers.

Convolutional
interleaver

convintrlv The delay values for the
set of shift registers
are nonnegative integer
multiples of a fixed integer
that you specify.

Helical
interleaver

helintrlv Fills an array with input
symbols in a helical fashion
and empties the array row
by row.

The helscanintrlv function and the helintrlv function both use a helical
array for internal computations. However, the two functions have some
important differences:

• helintrlv uses an unlimited-row array, arranges input symbols in the
array along columns, outputs some symbols that are not from the current
input, and leaves some input symbols in the array without placing them in
the output.

• helscanintrlv uses a fixed-size matrix, arranges input symbols in the
array across rows, and outputs all the input symbols without using any
default values or values from a previous call.

7-6

Convolutional Interleavers

Example: Convolutional Interleavers
The example below illustrates convolutional interleaving and deinterleaving
using a sequence of consecutive integers. It also illustrates the inherent delay
of the interleaver/deinterleaver pair.

x = [1:10]'; % Original data
delay = [0 1 2]; % Set delays of three shift registers.
[y,state_y] = muxintrlv(x,delay) % Interleave.
z = muxdeintrlv(y,delay) % Deinterleave.

In this example, the muxintrlv function initializes the three shift registers
to the values [], [0], and [0 0], respectively. Then the function processes
the input data [1:10]', performing internal computations as indicated in
the table below.

Current Input Current Shift
Register

Current Output Contents of
Shift Registers

1 1 1
[]
[0]
[0 0]

2 2 0
[]
[2]
[0 0]

3 3 0
[]
[2]
[0 3]

4 1 4
[]
[2]
[0 3]

5 2 2
[]
[5]
[0 3]

7-7

7 Interleaving

Current Input Current Shift
Register

Current Output Contents of
Shift Registers

6 3 0
[]
[5]
[3 6]

7 1 7
[]
[5]
[3 6]

8 2 5
[]
[8]
[3 6]

9 3 3
[]
[8]
[6 9]

10 1 10
[]
[8]
[6 9]

The output from the example is below.

y =

1
0
0
4
2
0
7
5
3

10

7-8

Convolutional Interleavers

state_y =

value: {3x1 cell}
index: 2

z =

0
0
0
0
0
0
1
2
3
4

Notice that the “Current Output” column of the table above agrees with the
values in the vector y. Also, the last row of the table above indicates that the
last shift register processed for the given data set is the first shift register.
This agrees with the value of 2 for state_y.index, which indicates that any
additional input data would be directed to the second shift register. You can
optionally check that the state values listed in state_y.value match the
“Contents of Shift Registers” entry in the last row of the table by typing
state_y.value{:} in the Command Window after executing the example.

Another feature to notice about the example output is that z contains
six zeros at the beginning before containing any of the symbols from the
original data set. The six zeros illustrate that the delay of this convolutional
interleaver/deinterleaver pair is length(delay)*max(delay) = 3*2 = 6. For
more information about delays, see “Delays of Convolutional Interleavers”
on page 7-9.

Delays of Convolutional Interleavers
After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind

7-9

7 Interleaving

the original sequence. The delay, measured in symbols, between the original
and restored sequences is indicated in the table below. The variable names
in the second column (delay, nrows, slope, col, ngrp, and stp) refer to the
inputs named on each function’s reference page.

Delays of Interleaver/Deinterleaver Pairs

Interleaver/Deinterleaver
Pair

Delay Between Original and Restored
Sequences

muxintrlv, muxdeintrlv length(delay)*max(delay)

convintrlv, convdeintrlv nrows*(nrows-1)*slope

helintrlv, heldeintrlv col*ngrp*ceil(stp*(col-1)/ngrp)

Effect of Delays on Recovery of Convolutionally Interleaved
Data
If you use a convolutional interleaver followed by a corresponding
convolutional deinterleaver, then a nonzero delay means that the recovered
data (that is, the output from the deinterleaver) is not the same as the original
data (that is, the input to the interleaver). If you compare the two data sets
directly, then you must take the delay into account by using appropriate
truncating or padding operations.

Here are some typical ways to compensate for a delay of D in an
interleaver/deinterleaver pair:

• Interleave a version of the original data that is padded with D extra
symbols at the end. Before comparing the original data with the recovered
data, omit the first D symbols of the recovered data. In this approach, all
the original symbols appear in the recovered data.

• Before comparing the original data with the recovered data, omit the last D
symbols of the original data and the first D symbols of the recovered data.
In this approach, some of the original symbols are left in the deinterleaver’s
shift registers and do not appear in the recovered data.

The code below illustrates these approaches by computing a symbol error rate
for the interleaving/deinterleaving operation.

7-10

Convolutional Interleavers

x = randint(20,1,64); % Original data
nrows = 3; slope = 2; % Interleaver parameters
D = nrows*(nrows-1)*slope; % Delay of interleaver/deinterleaver pair

% First approach.
x_padded = [x; zeros(D,1)]; % Pad x at the end before interleaving.
a1 = convintrlv(x_padded,nrows,slope); % Interleave padded data.
b1 = convdeintrlv(a1,nrows,slope)
b1_trunc = b1(D+1:end); % Remove first D symbols.
ser1 = symerr(x,b1_trunc) % Compare original data with truncation.

% Second approach.
a2 = convintrlv(x,nrows,slope); % Interleave original data.
b2 = convdeintrlv(a2,nrows,slope)
x_trunc = x(1:end-D); % Remove last D symbols.
b2_trunc = b2(D+1:end); % Remove first D symbols.
ser2 = symerr(x_trunc,b2_trunc) % Compare the two truncations.

The output is shown below. The zero values of ser1 and ser2 indicate that the
script correctly aligned the original and recovered data before computing the
symbol error rates. However, notice from the lengths of b1 and b2 that the two
approaches to alignment result in different amounts of deinterleaved data.

b1 =

0
0
0
0
0
0
0
0
0
0
0
0

59
42
1

7-11

7 Interleaving

28
52
54
43
8

56
5

35
37
48
17
28
62
10
31
61
39

ser1 =

0

b2 =

0
0
0
0
0
0
0
0
0
0
0
0

59
42

7-12

Convolutional Interleavers

1
28
52
54
43
8

ser2 =

0

Combining Interleaving Delays and Other Delays
If you use convolutional interleavers in a script that incurs an additional
delay, d, between the interleaver output and the deinterleaver input (for
example, a delay from a filter), then the restored sequence lags behind the
original sequence by the sum of d and the amount from the table Delays of
Interleaver/Deinterleaver Pairs. In this case, d must be an integer multiple of
the number of shift registers, or else the convolutional deinterleaver cannot
recover the original symbols properly. If d is not naturally an integer multiple
of the number of shift registers, then you can adjust the delay manually by
padding the vector that forms the input to the deinterleaver.

7-13

7 Interleaving

Selected Bibliography for Interleaving
[1] Berlekamp, E. R. and P. Tong, “Improved Interleavers for Algebraic Block
Codes,” U. S. Patent 4559625, Dec. 17, 1985.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Forney, G. D. Jr., “Burst-Correcting Codes for the Classic Bursty Channel,”
IEEE Transactions on Communications, vol. COM-19, October 1971, pp.
772-781.

[4] Heegard, Chris and Stephen B. Wicker, Turbo Coding,. Boston, Kluwer
Academic Publishers, 1999.

[5] Ramsey, J. L, “Realization of Optimum Interleavers,” IEEE Transactions
on Information Theory, IT-16 (3), May 1970, pp. 338-345.

[6] Takeshita, O. Y. and D. J. Costello, Jr., “New Classes Of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International Symposium on
Information Theory, Boston, Aug. 16-21, 1998. pp. 419.

7-14

8

Modulation

In most media for communication, only a fixed range of frequencies is
available for transmission. One way to communicate a message signal whose
frequency spectrum does not fall within that fixed frequency range, or one
that is otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation.

The sections of this chapter are as follows.

“Modulation Features of the Toolbox”
(p. 8-2)

Overview of the modulation types
and modulation operations that the
Communications Toolbox supports

“Modulation Terminology” (p. 8-4) Definitions of terms, as well as
inequalities that certain modulation
quantities must satisfy

“Analog Modulation” (p. 8-5) Representing analog signals and
performing analog modulation

“Digital Modulation” (p. 8-8) Representing digital signals,
representing signal constellations for
digital modulation, and performing
digital modulation

“Selected Bibliography for
Modulation” (p. 8-17)

Works containing background
information about modulation

8 Modulation

Modulation Features of the Toolbox
The available methods of modulation depend on whether the input signal is
analog or digital. The tables below show the modulation techniques that the
Communications Toolbox supports for analog and digital signals, respectively.

Analog Modulation Method Acronym

Amplitude modulation (suppressed
or transmitted carrier)

AM

Frequency modulation FM

Phase modulation PM

Single sideband amplitude
modulation

SSB

Digital Modulation Method Acronym

Differential phase shift keying
modulation

DPSK

Frequency shift keying modulation FSK

Minimum shift keying modulation MSK

Offset quadrature phase shift keying
modulation

OQPSK

Phase shift keying modulation PSK

Pulse amplitude modulation PAM

Quadrature amplitude modulation QAM

Baseband Versus Passband Simulation
For a given modulation technique, two ways to simulate modulation
techniques are called baseband and passband. Baseband simulation, also
known as the lowpass equivalent method, requires less computation. This

8-2

Modulation Features of the Toolbox

toolbox supports baseband simulation for digital modulation and passband
simulation for analog modulation.

8-3

8 Modulation

Modulation Terminology
Modulation is a process by which a carrier signal is altered according to
information in a message signal. The carrier frequency, denoted Fc, is the
frequency of the carrier signal. The sampling rate is the rate at which the
message signal is sampled during the simulation.

The frequency of the carrier signal is usually much greater than the highest
frequency of the input message signal. The Nyquist sampling theorem
requires that the simulation sampling rate Fs be greater than two times the
sum of the carrier frequency and the highest frequency of the modulated
signal, in order for the demodulator to recover the message correctly.

8-4

Analog Modulation

Analog Modulation
This section describes how to represent analog signals using vectors
or matrices. It provides examples of using the analog modulation and
demodulation functions.

Representing Analog Signals
To modulate an analog signal using this toolbox, start with a real message
signal and a sampling rate Fs in hertz. Represent the signal using a vector
x, the entries of which give the signal’s values in time increments of 1/Fs.
Alternatively, you can use a matrix to represent a multichannel signal, where
each column of the matrix represents one channel.

For example, if t measures time in seconds, then the vector x below is the
result of sampling a sine wave 8000 times per second for 0.1 seconds. The
vector y represents the modulated signal.

Fs = 8000; % Sampling rate is 8000 samples per second.
Fc = 300; % Carrier frequency in Hz
t = [0:.1*Fs]'/Fs; % Sampling times for .1 second
x = sin(20*pi*t); % Representation of the signal
y = ammod(x,Fc,Fs); % Modulate x to produce y.
figure;
subplot(2,1,1); plot(t,x); % Plot x on top.
subplot(2,1,2); plot(t,y)% Plot y below.

8-5

8 Modulation

As a multichannel example, the code below defines a two-channel signal
in which one channel is a sinusoid with zero initial phase and the second
channel is a sinusoid with an initial phase of pi/8.

Fs = 8000;
t = [0:.1*Fs]'/Fs;
x = [sin(20*pi*t), sin(20*pi*t+pi/8)];

Analog Modulation Example
This example illustrates the basic format of the analog modulation and
demodulation functions. Although the example uses phase modulation, most
elements of this example apply to other analog modulation techniques as well.

The example samples an analog signal and modulates it. Then it simulates an
additive white Gaussian noise (AWGN) channel, demodulates the received
signal, and plots the original and demodulated signals.

% Prepare to sample a signal for two seconds,
% at a rate of 100 samples per second.
Fs = 100; % Sampling rate
t = [0:2*Fs+1]'/Fs; % Time points for sampling

% Create the signal, a sum of sinusoids.

8-6

Analog Modulation

x = sin(2*pi*t) + sin(4*pi*t);

Fc = 10; % Carrier frequency in modulation
phasedev = pi/2; % Phase deviation for phase modulation

y = pmmod(x,Fc,Fs,phasedev); % Modulate.
y = awgn(y,10,'measured',103); % Add noise.
z = pmdemod(y,Fc,Fs,phasedev); % Demodulate.

% Plot the original and recovered signals.
figure; plot(t,x,'k-',t,z,'g-');
legend('Original signal','Recovered signal');

Other examples using analog modulation functions appear in the online
reference pages for ammod, amdemod, ssbdemod, and fmmod.

8-7

8 Modulation

Digital Modulation
Like analog modulation, digital modulation alters a transmittable signal
according to the information in a message signal. However, in this case,
the message signal is restricted to a finite set. Using this toolbox, you can
modulate or demodulate signals using various digital modulation techniques,
listed in “Modulation Features of the Toolbox” on page 8-2. You can also plot
signal constellations.

Note The modulation and demodulation functions do not perform pulse
shaping or filtering. See Chapter 9, “Special Filters” or “Combining Pulse
Shaping and Filtering with Modulation” on page 8-11 for more information
about filtering.

The topics in this section are as follows:

• “Representing Digital Signals” on page 8-8

• “Baseband Modulated Signals Defined” on page 8-9

• “Examples of Digital Modulation and Demodulation” on page 8-9

• “Plotting Signal Constellations” on page 8-12

Representing Digital Signals
To modulate a signal using digital modulation with an alphabet having M
symbols, start with a real message signal whose values are integers between 0
and M. Represent the signal by listing its values in a vector, x. Alternatively,
you can use a matrix to represent a multichannel signal, where each column
of the matrix represents one channel.

For example, if the modulation uses an alphabet with 8 symbols, then the
vector [2 3 7 1 0 5 5 2 6]' is a valid single-channel input to the modulator.
As a multichannel example, the two-column matrix

[2 3;
3 3;
7 3;
0 3;]

8-8

Digital Modulation

defines a two-channel signal in which the second channel has a constant
value of 3.

Baseband Modulated Signals Defined
If you use baseband modulation to produce the complex envelope y of the
modulation of a message signal x, then y is a complex-valued signal that is
related to the output of a passband modulator. If the modulated signal has
the waveform

Y t f t Y t f tc c1 22 2()cos() ()sin()π θ π θ+ − +

where fc is the carrier frequency and θ is the carrier signal’s initial phase,
then a baseband simulation recognizes that this equals the real part of

[(() ())]exp()Y t jY t e j f tj
c1 2 2+ θ π

and models only the part inside the square brackets. Here j is the square root
of -1. The complex vector y is a sampling of the complex signal

(() ())Y t jY t e j
1 2+ θ

If you prefer to work with passband signals instead of baseband signals,
then you can build functions that convert between the two. Be aware that
passband modulation tends to be more computationally intensive than
baseband modulation because the carrier signal typically needs to be sampled
at a high rate.

Examples of Digital Modulation and Demodulation
This section contains examples that illustrate how to use the digital
modulation and demodulation functions.

Computing the Symbol Error Rate
The example generates a random digital signal, modulates it, and adds noise.
Then it creates a scatter plot, demodulates the noisy signal, and computes the

8-9

8 Modulation

symbol error rate. For a more elaborate example that is similar to this one,
see “Modulating a Random Signal” on page 1-4.

% Create a random digital message
M = 16; % Alphabet size
x = randint(5000,1,M); % Message signal

% Use 16-QAM modulation.
y = qammod(x,M);

% Transmit signal through an AWGN channel.
ynoisy = awgn(y,15,'measured');

% Create scatter plot from noisy data.
scatterplot(ynoisy);

% Demodulate to recover the message.
z = qamdemod(ynoisy,M);

% Check symbol error rate.
[num,rt]= symerr(x,z)

The output and scatter plot are below. Your numerical results and plot might
vary, because the example uses random numbers.

num =

83

rt =

0.0166

8-10

Digital Modulation

Notice that the scatter plot does not look exactly like a signal constellation.
Whereas the signal constellation would have 16 precisely located points, the
noise causes the scatter plot to have a small cluster of points approximately
where each constellation point would be.

Combining Pulse Shaping and Filtering with Modulation
Modulation is often followed by pulse shaping, and demodulation is often
preceded by a filtering or an integrate-and-dump operation. This section
presents an example involving rectangular pulse shaping. For an example
that uses raised cosine pulse shaping, see “Pulse Shaping Using a Raised
Cosine Filter” on page 1-17.

Rectangular Pulse Shaping. Rectangular pulse shaping repeats each
output from the modulator a fixed number of times to create an upsampled
signal. Rectangular pulse shaping can be a first step or an exploratory step in
algorithm development, though it is less realistic than other kinds of pulse
shaping. If the transmitter upsamples the modulated signal, then the receiver
should downsample the received signal before demodulating. The “integrate
and dump” operation is one way to downsample the received signal.

The code below uses the rectpulse function for rectangular pulse shaping at
the transmitter and the intdump function for downsampling at the receiver.

8-11

8 Modulation

M = 16; % Alphabet size
x = randint(5000,1,M); % Message signal
Nsamp = 4; % Oversampling rate

% Use 16-QAM modulation.
y = qammod(x,M);

% Follow with rectangular pulse shaping.
ypulse = rectpulse(y,Nsamp);

% Transmit signal through an AWGN channel.
ynoisy = awgn(ypulse,15,'measured');

% Downsample at the receiver.
ydownsamp = intdump(ynoisy,Nsamp);

% Demodulate to recover the message.
z = qamdemod(ydownsamp,M);

Plotting Signal Constellations
To plot the signal constellation associated with a modulation process, follow
these steps:

1 If the alphabet size for the modulation process is M, then create the signal
[0:M-1]. This signal represents all possible inputs to the modulator.

2 Use the appropriate modulation function to modulate this signal. If
desired, scale the output. The result is the set of all points of the signal
constellation.

3 Apply the scatterplot function to the modulated output to create a plot.

Examples of Signal Constellation Plots
The following examples produce plots of signal constellations:

• “Constellation for 16-PSK” on page 8-13

• “Constellation for 32-QAM” on page 8-13

• “Gray-Coded Signal Constellation” on page 8-14

• “Customized Constellation for QAM” on page 8-16

8-12

Digital Modulation

The reference entries for the modnorm and genqammod functions provide
additional examples.

Constellation for 16-PSK. The code below plots a PSK constellation having
16 points.

M = 16;
x = [0:M-1];
scatterplot(pskmod(x,M));

Constellation for 32-QAM. The code below plots a QAM constellation
having 32 points and a peak power of 1 watt. The example also illustrates
how to label the plot with the numbers that form the input to the modulator.

M = 32;
x = [0:M-1];
y = qammod(x,M);
scale = modnorm(y,'peakpow',1);
y = scale*y; % Scale the constellation.
scatterplot(y); % Plot the scaled constellation.

8-13

8 Modulation

% Include text annotations that number the points.
hold on; % Make sure the annotations go in the same figure.
for jj=1:length(y)

text(real(y(jj)),imag(y(jj)),[' ' num2str(jj-1)]);
end
hold off;

Gray-Coded Signal Constellation. Because the general QAM modulation
functions genqammod and genqamdemod allow you to specify the exact
constellation points in sequence, you can implement Gray coding by using
them with a reordered version of the constellation points that qammod
produces.

The example below uses qammod to produce an 8-QAM signal constellation,
reorders the constellation points to implement Gray coding, and finally uses
genqammod to modulate a signal using the Gray-coded constellation. The
example also plots the Gray-coded constellation, labeling the points using
binary numbers so that you can verify visually that the constellation uses
Gray coding.

8-14

Digital Modulation

M = 8; % Alphabet size
grayencod = [0 1 2 3 6 7 4 5]; % Sequence for Gray coding

% Create a Gray-coded constellation.
xconst = [0:M-1];
constell = qammod(xconst,M); % Get the points.
constell_gray = constell(grayencod+1); % Reorder points.

% Use Gray-coded constellation for modulation.
xsig = randint(100,1,M); % Message signal
y = genqammod(xsig,constell_gray); % Modulate using Gray coding.
z = genqamdemod(y,constell_gray); % Demodulate.

% Plot the Gray-coded constellation.
scatterplot(constell_gray,1,0,'b.'); % Dots for points.
% Include text annotations that number the points in binary.
hold on; % Make sure the annotations go in the same figure.
annot = dec2bin([0:length(constell_gray)-1],log2(M));
text(real(constell_gray)+0.15,imag(constell_gray),annot);
axis([-4 4 -4 4]);
title('Constellation for Gray-Coded 8-QAM');
hold off;

8-15

8 Modulation

Customized Constellation for QAM. The code below describes and plots a
constellation with a customized structure.

% Describe constellation.
inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2];
inphase = [inphase; -inphase]; inphase = inphase(:);
quadr = [quadr; -quadr]; quadr = quadr(:);
const = inphase + j*quadr;

% Plot constellation.
scatterplot(const,1,0,'*');
hold on;
axis([-3 3 -3 3]);
title('Customized Constellation for QAM');
hold off;

8-16

Selected Bibliography for Modulation

Selected Bibliography for Modulation
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation
of Communication Systems, New York, Plenum Press, 1992.

[2] Proakis, John G., Digital Communications, 3rd ed., New York,
McGraw-Hill, 1995.

[3] Sklar, Bernard, Digital Communications: Fundamentals and Applications,
Englewood Cliffs, N.J., Prentice-Hall, 1988.

8-17

8 Modulation

8-18

9

Special Filters

The Communications Toolbox includes several functions that can help you
design and use filters. Other filtering capabilities are in the Signal Processing
Toolbox. The sections of this chapter are as follows.

“Noncausality and the Group Delay
Parameter” (p. 9-2)

An implementation issue relating to
the group delay of a filter

“Designing Hilbert Transform
Filters” (p. 9-5)

Designing a Hilbert transform filter
using the hilbiir function

“Filtering with Raised Cosine
Filters” (p. 9-7)

Filtering data with a raised cosine
filter, using the rcosflt function

“Designing Raised Cosine Filters”
(p. 9-13)

Designing a raised cosine filter using
the rcosine function

“Selected Bibliography for Special
Filters” (p. 9-15)

Works containing background
information about filters

For a demonstration involving raised cosine filters, type playshow rcosdemo.

9 Special Filters

Noncausality and the Group Delay Parameter
Without propagation delays, both Hilbert filters and raised cosine filters are
noncausal. This means that the current output depends on the system’s
future input. In order to design only realizable filters, the hilbiir, rcosine,
and rcosflt functions delay the input signal before producing an output.
This delay, known as the filter’s group delay, is the time between the filter’s
initial response and its peak response. The group delay is defined as

− d
dω

θ ω()

where θ is the phase of the filter and ω is the frequency in radians. This
delay is set so that the impulse response before time zero is negligible and
can safely be ignored by the function.

For example, the Hilbert filter whose impulse is shown below uses a group
delay of 1 second. Notice in the figure that the impulse response near time 0
is small and that the large impulse response values occur near time 1.

9-2

Noncausality and the Group Delay Parameter

Example: Compensating for Group Delays When
Analyzing Data
Comparing filtered with unfiltered data might be easier if you delay the
unfiltered signal by the filter’s group delay. For example, suppose you use the
code below to filter x and produce y.

tx = 0:4; % Times for data samples
x = [0 1 1 1 1]'; % Binary data samples
% Filter the data and use a delay of 2 seconds.
delay = 2;
[y,ty] = rcosflt(x,1,8,'fir',.3,delay);

Here, the elements of tx and ty represent the times of each sample of x and y,
respectively. However, y is delayed relative to x, so corresponding elements
of x and y do not have the same time values. Plotting y against ty and x
against tx is less useful than plotting y against ty and x against a delayed
version of tx.

% Top plot
subplot(2,1,1), plot(tx,x,'*',ty,y);
legend('Data','Filtered data');
title('Data with No Added Delay');
% Bottom plot delays tx.
subplot(2,1,2), plot(tx+delay,x,'*',ty,y);
legend('Data','Filtered data');
title('Data with an Added Delay');

For another example of compensating for group delay, see the raised-cosine
filter demo by typing playshow rcosdemo.

9-3

9 Special Filters

9-4

Designing Hilbert Transform Filters

Designing Hilbert Transform Filters
The hilbiir function designs a Hilbert transform filter and produces either

• A plot of the filter’s impulse response

• A quantitative characterization of the filter, using either a transfer function
model or a state-space model

Example with Default Parameters
For example, typing simply

hilbiir

plots the impulse response of a fourth-order digital Hilbert transform filter
having a 1-second group delay. The sample time is 2/7 seconds. In this
particular design, the tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter having a 1-second
group delay. The plot is in the figure in “Noncausality and the Group Delay
Parameter” on page 9-2.

To compute this filter’s transfer function, use the command below.

[num,den] = hilbiir

num =

-0.3183 -0.3041 -0.5160 -1.8453 3.3105

den =

1.0000 -0.4459 -0.1012 -0.0479 -0.0372

Here, the vectors num and den contain the coefficients of the numerator
and denominator, respectively, of the transfer function in ascending order
of powers of z-1.

The commands in this section use the function’s default parameters. You
can also control the filter design by specifying the sample time, group delay,

9-5

9 Special Filters

bandwidth, and tolerance index. The reference entry for hilbiir explains
these parameters. The group delay is also mentioned above in “Noncausality
and the Group Delay Parameter” on page 9-2.

9-6

Filtering with Raised Cosine Filters

Filtering with Raised Cosine Filters
The rcosflt function applies a raised cosine filter to data. Because rcosflt
is a versatile function, you can

• Use rcosflt to both design and implement the filter

• Specify a raised cosine filter and use rcosflt only to filter the data

• Design and implement either raised cosine filters or square-root raised
cosine filters

• Specify the rolloff factor and/or group delay of the filter, if rcosflt designs
the filter

• Design and implement either FIR or IIR filters

This section discusses the use of sampling rates in filtering and then covers
these options. For an additional example, type playshow rcosdemo in the
MATLAB Command Window.

Sampling Rates
The basic rcosflt syntax

y = rcosflt(x,Fd,Fs...) % Basic syntax

assumes by default that you want to apply the filter to a digital signal x
whose sampling rate is Fd. The filter’s sampling rate is Fs. The ratio of Fs
to Fd must be an integer. By default, the function upsamples the input data
by a factor of Fs/Fd before filtering. It upsamples by inserting Fs/Fd-1 zeros
between consecutive input data samples. The upsampled data consists of
Fs/Fd samples per symbol and has sampling rate Fs.

An example using this syntax is below. The output sampling rate is four
times the input sampling rate.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.

Maintaining the Input Sampling Rate
You can also override the default upsampling behavior. In this case, the
function assumes that the input signal already has sampling rate Fs and

9-7

9 Special Filters

consists of Fs/Fd samples per symbol. You might want to maintain the
sampling rate in a receiver’s filter if the corresponding transmitter’s filter
has already upsampled sufficiently.

To maintain the sampling rate, modify the fourth input argument in rcosflt
to include the string Fs. For example, in the first command below, rcosflt
uses its default upsampling behavior and the output sampling rate is four
times the input sampling rate. By contrast, the second command below uses
Fs in the string argument and thus maintains the sampling rate throughout.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.
y2 = rcosflt([1;0;0],1,4,'fir/Fs'); % Maintain sampling rate.

The second command assumes that the sampling rate of the input signal is 4,
and that the input signal contains 4/1 samples per symbol.

An example that uses the 'Fs' option at the receiver is in “Combining Two
Square-Root Raised Cosine Filters” on page 9-11.

Designing Filters Automatically
The simplest syntax of rcosflt assumes that the function should both design
and implement the raised cosine filter. For example, the command below
designs an FIR raised cosine filter and then filters the input vector [1;0;0]
with it. The second and third input arguments indicate that the function
should upsample the data by a factor of 8 (that is, 8/1) during the filtering
process.

y = rcosflt([1;0;0],1,8);

Types of Raised Cosine Filters
You can have rcosflt design other types of raised cosine filters by using a
fourth input argument. Variations on the previous example are below.

y = rcosflt([1;0;0],1,8,'fir'); % Same as original example
y = rcosflt([1;0;0],1,8,'fir/sqrt'); % FIR square-root RC filter
y = rcosflt([1;0;0],1,8,'iir'); % IIR raised cosine filter
y = rcosflt([1;0;0],1,8,'iir/sqrt'); % IIR square-root RC filter

9-8

Filtering with Raised Cosine Filters

Specifying Filters Using Input Arguments
If you have a transfer function for a raised cosine filter, then you can provide
it as an input to rcosflt so that rcosflt does not design its own filter. This is
useful if you want to use rcosine to design the filter once and then use the
filter many times. For example, the rcosflt command below uses the 'filter'
flag to indicate that the transfer function is an input argument. The input num
is a vector that represents the FIR transfer function by listing its coefficients.

num = rcosine(1,8); y = rcosflt([1;0;0],1,8,'filter',num);

This syntax for rcosflt works whether num represents the transfer function
for a square-root raised cosine FIR filter or an ordinary raised cosine FIR
filter. For example, the code below uses a square-root raised cosine FIR filter.
Only the definition of num is different.

num = rcosine(1,8,'sqrt'); y = rcosflt([1;0;0],1,8,'filter',num);

You can also use a raised cosine IIR filter. To do this, modify the fourth input
argument of the rcosflt command above so that it contains the string 'iir'
and provide a denominator argument. An example is below.

delay = 8;
[num,den] = rcosine(1,8,'iir',.5,delay);
y = rcosflt([1;0;0],1,8,'iir/filter',num,den,delay);

Controlling the Rolloff Factor
If rcosflt designs the filter automatically, then you can control the rolloff
factor of the filter, as described below. If you specify your own filter, then
rcosflt does not need to know its rolloff factor.

The rolloff factor determines the excess bandwidth of the filter. For example,
a rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the
input sampling frequency, Fd. This also means that the transition band of the
filter extends from .5 * Fd to 1.5 * Fd.

The default rolloff factor is .5, but if you want to use a value of .2, then you
can use a command such as the one below. Typical values for the rolloff factor
are between .2 and .5.

y = rcosflt([1;0;0],1,8,'fir',.2); % Rolloff factor is .2.

9-9

9 Special Filters

Controlling the Group Delay
If rcosflt designs the filter automatically, then you can control the group
delay of the filter, as described below. If you specify your own FIR filter, then
rcosflt does not need to know its group delay.

The filter’s group delay is the time between the filter’s initial response and its
peak response. The default group delay in the implementation is three input
samples. To specify a different value, measure it in input symbol periods and
provide it as the sixth input argument. For example, the command below
specifies a group delay of six input samples, which is equivalent to 6 *8 /1
output samples.

y = rcosflt([1;0;0],1,8,'fir',.2,6); % Delay is 6 input samples.

The group delay influences the size of the output, as well as the order of the
filter if rcosflt designs the filter automatically. See the reference page for
rcosflt for details that relate to the syntax you want to use.

Example: Raised Cosine Filter Delays
The code below filters a signal using two different group delays. A larger
delay results in a smaller error in the frequency response of the filter. The
plot shows how the two filtered signals differ, and the output pt indicates that
the first peak occurs at different times for the two filtered signals. In the plot,
the solid line corresponds to a delay of six samples, while the dashed line
corresponds to a delay of eight samples.

[y,t] = rcosflt(ones(10,1),1,8,'fir',.5,6); % Delay = 6 samples
[y1,t1] = rcosflt(ones(10,1),1,8,'fir',.5,8); % Delay = 8 samples
plot(t,y,t1,y1,'--') % Two curves indicate the different delays.
legend('Delay = 6 samples','Delay = 8 samples','Location','NorthOutside');
peak = t(find(y == max(y))); % Times where first curve peaks
peak1 = t1(find(y1 == max(y1))); % Times where second curve peaks
pt = [min(peak), min(peak1)] % First peak time for both curves

The output is below.

pt =

14.6250 16.6250

9-10

Filtering with Raised Cosine Filters

If Fs/Fd is at least 4, then a group delay value of at least 8 works well in many
cases. In the examples of this section, Fs/Fd is 8.

Delays of Six Samples (Solid) and Eight Samples (Dashed)

Combining Two Square-Root Raised Cosine Filters
If you want to split the filtering equally between the transmitter’s filter and
the receiver’s filter, then you can use a pair of square-root raised cosine
filters. In theory, the combination of two square-root raised cosine filters
is equivalent to a single normal raised cosine filter. However, the limited
impulse response of practical square-root raised cosine filters causes a slight
difference between the response of two successive square-root raised cosine
filters and the response of one raised cosine filter.

Using rcosine and rcosflt to Implement Square-Root Raised
Cosine Filters
One way to implement the pair of square-root raised cosine filters is to follow
these steps:

1 Use rcosine with the 'sqrt' flag to design a square-root raised cosine filter.

2 Use rcosflt in the transmitter section of code to upsample and filter the
data.

9-11

9 Special Filters

3 Use rcosflt in the receiver section of code to filter the received data
without upsampling it. Use the 'Fs' flag to avoid upsampling.

An example of this approach is below. Notice that the syntaxes for rcosflt
use the 'filter' flag to indicate that you are providing the filter’s transfer
function as an input.

% First approach
x = randint(100,1,2,1234); % Data
num = rcosine(1,8,'sqrt'); % Transfer function of filter
y1 = rcosflt(x,1,8,'filter',num); % Filter the data.
z1 = rcosflt(y1,1,8,'Fs/filter',num); % Filter the received data
% but do not upsample it.

Using rcosflt Alone
Another way to implement the pair of square-root raised cosine filters is to
have rcosflt both design and use the square-root raised cosine filter. This
approach avoids using rcosine. The corresponding example code is below.
Notice that the syntaxes for rcosflt use the 'sqrt' flag to indicate that you
want it to design a square-root raised cosine filter.

% Second approach
x = randint(100,1,2,1234); % Data (again)
y2 = rcosflt(x,1,8,'sqrt'); % Design and use a filter.
z2 = rcosflt(y2,1,8,'sqrt/Fs'); % Design and use a filter
% but do not upsample the data.

Because these two approaches are equivalent, y1 is the same as y2 and z1 is
the same as z2.

9-12

Designing Raised Cosine Filters

Designing Raised Cosine Filters
The rcosine function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter

• Infinite impulse response (IIR) raised cosine filter

• FIR square-root raised cosine filter

• IIR square-root raised cosine filter

The function returns the transfer function as output. To learn about applying
raised cosine filters, see “Filtering with Raised Cosine Filters” on page 9-7.

Sampling Rates
The rcosine function assumes that you want to apply the filter to a digital
signal whose sampling rate is Fd. The function also requires you to provide
the filter’s sampling rate, Fs. The ratio of Fs to Fd must be an integer.

Example Designing a Square-Root Raised Cosine
Filter
For example, the command below designs a square-root raised cosine FIR
filter with a sampling rate of 2, for use with a digital signal whose sampling
rate is 1.

num = rcosine(1,2,'fir/sqrt')
num =

Columns 1 through 7

0.0021 -0.0106 0.0300 -0.0531 -0.0750 0.4092 0.8037

Columns 8 through 13

0.4092 -0.0750 -0.0531 0.0300 -0.0106 0.0021

Here, the vector num contains the coefficients of the filter, in ascending order
of powers of z-1.

9-13

9 Special Filters

Other Options in Filter Design
You can also control the filter design by specifying the rolloff factor, group
delay, and (for IIR filters) tolerance index explicitly, instead of having rcosine
use its default values. The reference entry for rcosine explains these
parameters. The group delay is also mentioned above in “Noncausality and
the Group Delay Parameter” on page 9-2.

9-14

Selected Bibliography for Special Filters

Selected Bibliography for Special Filters
[1] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold,
1985.

[2] Oppenheim, Alan V., and Ronald W. Schafer, Discrete-Time Signal
Processing, Englewood Cliffs, N.J., Prentice Hall, 1989.

[3] Proakis, John G., Digital Communications, 3rd ed., New York,
McGraw-Hill, 1995.

9-15

9 Special Filters

9-16

10

Channels

Communication channels introduce noise, fading, interference, and other
distortions into the signals that they transmit. Simulating a communication
system involves modeling a channel based on mathematical descriptions of
the channel. Different transmission media have different properties and
are modeled differently. This chapter describes the channel features of the
Communications Toolbox, in the sections listed below.

“Channel Features of the Toolbox”
(p. 10-2)

The kinds of channel models that the
toolbox supports

“AWGN Channel” (p. 10-3) Using an AWGN channel for real or
complex signals

“Fading Channels” (p. 10-6) Defining a fading channel object and
applying it to a signal

“Binary Symmetric Channel” (p.
10-24)

Using a binary symmetric channel
for binary signals

“Selected Bibliography for Channels”
(p. 10-26)

Works containing background
information about channels

10 Channels

Channel Features of the Toolbox
This toolbox supports these types of channels:

• Additive white Gaussian noise (AWGN) channel

• Fading channel

• Binary symmetric channel, for binary signals

Many applications use a channel model that combines fading with AWGN.
In such cases, you should use the fading channel function first, followed by
the AWGN function.

10-2

AWGN Channel

AWGN Channel
An AWGN channel adds white Gaussian noise to the signal that passes
through it. To model an AWGN channel, use the awgn function. Several
examples that illustrate the use of awgn are in Chapter 1, “Getting Started”.
The following demos also use awgn: basicsimdemo, vitsimdemo, and
scattereyedemo.

Describing the Noise Level of an AWGN Channel
The relative power of noise in an AWGN channel is typically described by
quantities such as

• Signal-to-noise ratio (SNR) per sample. This is the actual input parameter
to the awgn function.

• Ratio of bit energy to noise power spectral density (Eb/N0). This quantity is
used by BERTool and performance evaluation functions in this toolbox.

• Ratio of symbol energy to noise power spectral density (Es/N0)

Relationship Between Es/N0 and Eb/N0
The relationship between Es/N0 and Eb/N0, both expressed in dB, is as follows:

E N E N ks b/ / log ()0 0 1010 (dB) (dB)= +

where k is the number of information bits per symbol.

In a communication system, k might be influenced by the size of the
modulation alphabet or the code rate of an error-control code. For example,
if a system uses a rate-1/2 code and 8-PSK modulation, then the number of
information bits per symbol (k) is the product of the code rate and the number
of coded bits per modulated symbol: (1/2) log2(8) = 3/2. In such a system, three
information bits correspond to six coded bits, which in turn correspond to
two 8-PSK symbols.

Relationship Between Es/N0 and SNR
The relationship between Es/N0 and SNR, both expressed in dB, is as follows:

10-3

matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/basicsimdemo.html%27%5D%29;
matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/vitsimdemo.html%27%5D%29;
matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/scattereyedemo.html%27%5D%29;

10 Channels

E N T T SNRs sym samp/ log /0 1010 (dB) (dB) for complex inpu= () + tt signals

 (dB) (dB) for reaE N T T SNRs sym samp/ log /0 1010 2= () + ll input signals

where Tsym is the signal’s symbol period and Tsamp is the signal’s sampling
period.

For example, if a complex baseband signal is oversampled by a factor of 4,
then Es/N0 exceeds the corresponding SNR by 10 log10(4).

Derivation for Complex Input Signals. You can derive the relationship
between Es/N0 and SNR for complex input signals as follows:

E N S T N B

T F S N

s sym n

sym s

/ log () /(/)

log () (/)

0 10

10

10

10

 (dB) = ⋅()
= ⋅())
= ⋅()
= () +

10

10

10

10

log (/)

log /

T T SNR

T T SNR

sym samp

sym samp

linear

 (dB)

where

• S = Input signal power, in watts

• N = Noise power, in watts

• Bn = Noise bandwidth, in Hz

• Fn = Sampling frequency, in Hz.

Note that Bn= Fn = 1/Tsamp.

Behavior for Real and Complex Input Signals. The following figures
illustrate the difference between the real and complex cases by showing the
noise power spectral densities Sn(f) of a real bandpass white noise process
and its complex lowpass equivalent.

10-4

AWGN Channel

B/2-B/2

N0

Sn(f)

f

N0/2

Sn(f)

f
-fc fc

Complex Lowpass Noise Power Spectral Density

Real Bandpass Noise Power Spectral Density

BB

10-5

10 Channels

Fading Channels
Rayleigh and Rician fading channels are useful models of real-world
phenomena in wireless communications. These phenomena include multipath
scattering effects, time dispersion, and Doppler shifts that arise from relative
motion between the transmitter and receiver. This section gives a brief
overview of fading channels and describes how to implement them using the
toolbox. The topics are as follows:

• “Overview of Fading Channels” on page 10-6

• “Specifying Fading Channels” on page 10-7

• “Configuring Channel Objects” on page 10-11

• “Using Fading Channels” on page 10-14

• “Examples Using Fading Channels” on page 10-15

Overview of Fading Channels
The figure below depicts direct and major reflected paths between a stationary
radio transmitter and a moving receiver. The shaded shapes represent
reflectors such as buildings.

Transmitter
ReceiverDirect

Reflected

Reflected

The major paths result in the arrival of delayed versions of the signal at the
receiver. In addition, the radio signal undergoes scattering on a local scale
for each major path. Such local scattering is typically characterized by a
large number of reflections by objects near the mobile. These irresolvable
components combine at the receiver and give rise to the phenomenon known
as multipath fading. Due to this phenomenon, each major path behaves as
a discrete fading path. Typically, the fading process is characterized by a
Rayleigh distribution for a non-line-of-sight path and a Rician distribution for
a line-of-sight path.

10-6

Fading Channels

The relative motion between the transmitter and receiver causes Doppler
shifts. Local scattering typically comes from many angles around the mobile.
This scenario causes a range of Doppler shifts, known as the Doppler
spectrum. The maximum Doppler shift corresponds to the local scattering
components whose direction exactly opposes the mobile’s trajectory.

Fading Channel Features of the Toolbox
The toolbox implements a baseband channel model for multipath propagation
scenarios that include

• Local scattering from all angles, with uniform power distribution, around
the mobile. This scenario corresponds to what is known as the Jakes
Doppler spectrum. The toolbox lets you specify the maximum Doppler
shift of the Jakes Doppler spectrum. You can also omit a Doppler shift
to model a static channel.

• N discrete fading paths, each with its own delay and average power gain.
A channel for which N = 1 is called a frequency-flat fading channel. A
channel for which N > 1 is experienced as a frequency-selective fading
channel by a signal of sufficiently wide bandwidth.

• A Rayleigh or Rician model for the first major path. Any subsequent paths
use a Rayleigh model.

Some additional information about typical values for delays and gains is in
“Choosing Realistic Channel Property Values” on page 10-12.

Specifying Fading Channels
This toolbox models a fading channel as a linear FIR filter. Filtering a signal
using a fading channel involves these steps:

1 Create a channel object that describes the channel that you want to use.
A channel object is a type of MATLAB variable that contains information
about the channel, such as the maximum Doppler shift.

2 Adjust properties of the channel object, if necessary, to tailor it to your
needs. For example, you can change the path delays or average path gains.

3 Apply the channel object to your signal using the filter function.

10-7

10 Channels

This section describes how to define, inspect, and manipulate channel objects.
The topics are:

• “Creating Channel Objects” on page 10-8

• “Viewing Object Properties” on page 10-9

• “Changing Object Properties” on page 10-10

• “Linked Properties of Channel Objects” on page 10-11

Creating Channel Objects
The rayleighchan and ricianchan functions create fading channel objects.
The table below indicates the situations in which each function is suitable.

Function Object Situation Modeled

rayleighchan Rayleigh fading
channel object

One or more major
reflected paths

ricianchan Rician fading channel
object

One direct line-of-sight
path, possibly combined
with one or more major
reflected paths

For example, the command below creates a channel object representing a
Rayleigh fading channel that acts on a signal sampled at 100,000 Hz. The
maximum Doppler shift of the channel is 130 Hz.

c1 = rayleighchan(1/100000,130); % Rayleigh fading channel object

The object c1 is a valid input argument for the filter function. To learn
how to use the filter function to filter a signal using a channel object, see
“Using Fading Channels” on page 10-14.

Duplicating and Copying Objects. Another way to create an object is to
duplicate an existing object and then adjust the properties of the new object, if
necessary. If you do this, it is important that you use a copy command such as

c2 = copy(c1); % Copy c1 to create an independent c2.

10-8

Fading Channels

instead of c2 = c1. The copy command creates a copy of c1 that is
independent of c1. By contrast, the command c2 = c1 creates c2 as merely a
reference to c1, so that c1 and c2 always have indistinguishable content.

Viewing Object Properties
A channel object has numerous properties that record information about
the channel model, about the state of a channel that has already filtered a
signal, and about the channel’s operation on a future signal. You can view
the properties in these ways:

• To view all properties of an channel object, enter the object’s name in the
Command Window.

• To view a specific property of a channel object or to assign the property’s
value to a variable, enter the object’s name followed by a dot (period),
followed by the name of the property.

In the example below, entering c1 causes MATLAB to display all properties
of the channel object c1. Some of the properties have values from the
rayleighchan command that created c1, while other properties have default
values.

c1 = rayleighchan(1/100000,130); % Create object.
c1 % View all properties of c1.
g = c1.PathGains % Retrieve the PathGains property of c1.

The output is

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

MaxDopplerShift: 130
PathDelays: 0

AvgPathGaindB: 0
NormalizePathGains: 1

PathGains: 0.2104- 0.6197i
ChannelFilterDelay: 0

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

10-9

10 Channels

g =

0.2104 - 0.6197i

A Rician fading channel object has an additional property that does not
appear above, namely, a scalar KFactor property.

For more information about what each channel property means, see the
reference page for the rayleighchan or ricianchan function.

Changing Object Properties
To change the value of a writeable property of a channel object, issue an
assignment statement that uses dot notation on the channel object. More
specifically, dot notation means an expression that consists of the object’s
name, followed by a dot, followed by the name of the property.

The example below illustrates how to change the ResetBeforeFiltering
property, indicating that you do not want to reset the channel before each
filtering operation.

c1 = rayleighchan(1/100000,130) % Create object.
c1.ResetBeforeFiltering = 0 % Do not reset before filtering.

The output below displays all the properties of the channel object before and
after the change in the value of the ResetBeforeFiltering property. Notice
that in the second listing of properties, the ResetBeforeFiltering property
has the value 0.

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

MaxDopplerShift: 130
PathDelays: 0

AvgPathGaindB: 0
NormalizePathGains: 1

PathGains: 0.2104- 0.6197i
ChannelFilterDelay: 0

10-10

Fading Channels

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

MaxDopplerShift: 130
PathDelays: 0

AvgPathGaindB: 0
NormalizePathGains: 1

PathGains: 0.2104- 0.6197i
ChannelFilterDelay: 0

ResetBeforeFiltering: 0
NumSamplesProcessed: 0

Note Some properties of a channel object are read-only. For example, you
cannot assign a new value to the NumSamplesProcessed property because
the channel automatically counts the number of sample it has processed
since the last reset.

Linked Properties of Channel Objects
Some properties of an channel object are related to each other such that when
one property’s value changes, another property’s value must change in some
corresponding way to keep the channel object consistent. For example, if you
change the vector length of PathDelays, then the value of AvgPathGaindB
must change so that its vector length equals that of the new value of
PathDelays. This is because the length of each of the two vectors equals the
number of discrete paths of the channel. For details about linked properties
and an example, see the reference page for rayleighchan or ricianchan.

Configuring Channel Objects
Before you filter a signal using a channel object, you must ensure that the
properties of the channel have suitable values for the situation you want to
model. This section offers some guidelines to help you choose realistic values
that are appropriate for your modeling needs. The topics are

10-11

10 Channels

• “Choosing Realistic Channel Property Values” on page 10-12

• “Configuring Channel Objects Based on Simulation Needs” on page 10-13

The syntaxes for viewing and changing values of properties of channel objects
are described in “Specifying Fading Channels” on page 10-7.

Choosing Realistic Channel Property Values
Here are some tips for choosing property values that describe realistic
channels:

Path Delays

• By convention, the first delay is typically set to zero. The first delay
corresponds to the first arriving path.

• For indoor environments, path delays after the first are typically between 1
ns and 100 ns (that is, between 1e-9 s and 1e-7 s).

• For outdoor environments, path delays after the first are typically between
100 ns and 10 µs (that is, between 1e-7 s and 1e-5 s). Very large delays
in this range might correspond, for example, to an area surrounded by
mountains.

• The ability of a signal to resolve discrete paths is related to its bandwidth.
If the difference between the largest and smallest path delays is less than
about 1% of the symbol period, then the signal experiences the channel
as if it had only one discrete path.

Average Path Gains

• The average path gains in the channel object indicate the average power
gain of each fading path. In practice, an average path gain value is a large
negative dB value. However, computer models typically use average path
gains between -20 dB and 0 dB.

• The dB values in a vector of average path gains often decay roughly
linearly as a function of delay, but the specific delay profile depends on the
propagation environment.

• To ensure that the expected value of the path gains’ total power is 1, you
can normalize path gains via the channel object’s NormalizePathGains
property.

10-12

Fading Channels

Maximum Doppler Shifts

• Some wireless applications, such as standard GSM (Global System for
Mobile Communication) systems, prefer to specify Doppler shifts in terms
of the speed of the mobile. If the mobile moves at speed v (m/s), then the
maximum Doppler shift is given below, where f is the transmission carrier
frequency in Hz and c is the speed of light (3e8 m/s).

f
vf
cd =

• Based on the formula above in terms of the speed of the mobile, a signal
from a moving car on a freeway might experience a maximum Doppler
shift of about 80 Hz, while a signal from a moving pedestrian might
experience a maximum Doppler shift of about 4 Hz. These figures assume a
transmission carrier frequency of 900 MHz.

• A maximum Doppler shift of 0 corresponds to a static channel that comes
from a Rayleigh or Rician distribution.

K-Factor for Rician Fading Channels

• The Rician K-factor specifies the ratio of specular-to-diffuse power for a
direct line-of-sight path. The ratio is expressed linearly, not in dB.

• For Rician fading, the K-factor is typically between 1 and 10.

• A K-factor of 0 corresponds to Rayleigh fading.

Configuring Channel Objects Based on Simulation Needs
Here are some tips for configuring a channel object to customize the filtering
process:

• If your data is partitioned into a series of vectors (that you process within
a loop, for example), then you can invoke the filter function multiple
times while automatically saving the channel’s state information for use
in a subsequent invocation. The state information is visible to you in the
channel object’s PathGains and NumSamplesProcessed properties, but also
involves properties that are internal rather than visible.

10-13

10 Channels

Note To maintain continuity from one invocation to the next, you must set
the ResetBeforeFiltering property of the channel object to 0.

• If you set the ResetBeforeFiltering property of the channel object to 0
and want the randomness to be repeatable, then use the reset function
before filtering any signals, to reset both the channel and the state of the
internal random number generator.

• If you want to reset the channel before a filtering operation so that it
does not use any previously stored state information, then either use the
reset function or set the ResetBeforeFiltering property of the channel
object to 1. The former method resets the channel object once, while the
latter method causes the filter function to reset the channel object each
time you invoke it.

• If you want to normalize the fading process so that the expected value of
the path gains’ total power is 1, then set the NormalizePathGains property
of the channel object to 1.

Using Fading Channels
After you have created a channel object as described in “Specifying Fading
Channels” on page 10-7, you can use the filter function to pass a signal
through the channel. The arguments to filter are the channel object and the
signal. At the end of the filtering operation, the channel object retains its state
so that you can find out the final path gains or the total number of samples
that the channel has processed since it was created or reset. If you configured
the channel to avoid resetting its state before each new filtering operation
(that is, ResetBeforeFiltering is 0), then the retention of state information is
important for maintaining continuity between successive filtering operations.

For an example that illustrates the basic syntax and state retention, see
“Power of a Faded Signal” on page 10-15.

Compensating for Fading
A communication system involving a fading channel usually requires
component(s) that compensate for the fading. Here are some typical
approaches:

10-14

Fading Channels

• Differential modulation or a one-tap equalizer can help compensate for a
frequency-flat fading channel.

• An equalizer with multiple taps can help compensate for a
frequency-selective fading channel.

See Chapter 11, “Equalizers” to learn how to implement equalizers in this
toolbox. See the dpskmod reference page or the example in “Comparing
Empirical with Theoretical Results” on page 10-16 to learn how to implement
differential modulation.

Examples Using Fading Channels
The following examples use fading channels:

• “Power of a Faded Signal” on page 10-15

• “Comparing Empirical with Theoretical Results” on page 10-16

• “Working with Delays” on page 10-18

• “Quasi-Static Channel Modeling” on page 10-19

• “Filtering Using a Loop” on page 10-22

Power of a Faded Signal
The code below plots a faded signal’s power (versus sample number). The
code also illustrates the syntax of the filter and rayleighchan functions
and the state retention of the channel object. Notice from the output that
NumSamplesProcessed equals the number of elements in sig, the signal.

c = rayleighchan(1/10000,100);
sig = j*ones(2000,1); % Signal
y = filter(c,sig); % Pass signal through channel.
c % Display all properties of the channel object.

% Plot power of faded signal, versus sample number.
plot(20*log10(abs(y)))

Below are the output and the plot.

10-15

10 Channels

c =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-004

MaxDopplerShift: 100
PathDelays: 0

AvgPathGaindB: 0
NormalizePathGains: 1

PathGains: -1.1700+ 0.1288i
ChannelFilterDelay: 0

ResetBeforeFiltering: 1
NumSamplesProcessed: 2000

Comparing Empirical with Theoretical Results
The code below creates a frequency-flat Rayleigh fading channel object and
uses it to process a DBPSK signal consisting of a single vector. The example
continues by computing the bit error rate of the system for different values
of the signal-to-noise ratio. Notice that the example uses filter before
awgn; this is the recommended sequence to use when you combine fading
with AWGN.

% Create Rayleigh fading channel object.
chan = rayleighchan(1/10000,100);

10-16

Fading Channels

% Generate data and apply fading channel.
M = 2; % DBPSK modulation order
tx = randint(50000,1,M); % Random bit stream
dpskSig = dpskmod(tx,M); % DPSK signal
fadedSig = filter(chan,dpskSig); % Effect of channel

% Compute error rate for different values of SNR.
SNR = 0:2:20; % Range of SNR values, in dB.
for n = 1:length(SNR)

rxSig = awgn(fadedSig,SNR(n)); % Add Gaussian noise.
rx = dpskdemod(rxSig,M); % Demodulate.
% Compute error rate.
% Ignore first sample because of DPSK initial condition.
[nErrors, BER(n)] = biterr(tx(2:end),rx(2:end));

end

% Compute theoretical performance results, for comparison.
BERtheory = berfading(SNR,'dpsk',M,1);

% Plot BER results.
semilogy(SNR,BERtheory,'b-',SNR,BER,'r*');
legend('Theoretical BER','Empirical BER');
xlabel('SNR (dB)'); ylabel('BER');
title('Binary DPSK over Rayleigh Fading Channel');

The resulting plot shows that the simulation results are close to the
theoretical results computed by berfading.

10-17

10 Channels

Working with Delays
The value of a channel object’s ChannelFilterDelay property is the number of
samples by which the output of the channel lags the input. If you compare the
input and output data sets directly, then you must take the delay into account
by using appropriate truncating or padding operations.

The example illustrates one way to account for the delay before computing
a bit error rate.

M = 2; % DQPSK modulation order
bitRate = 50000;

% Create Rayleigh fading channel object.
ch = rayleighchan(1/bitRate,4,[0 0.5/bitRate],[0 -10]);
delay = ch.ChannelFilterDelay;

tx = randint(50000,1,M); % Random bit stream
dpskSig = dpskmod(tx,M); % DPSK signal
fadedSig = filter(ch,dpskSig); % Effect of channel
rx = dpskdemod(fadedSig,M); % Demodulated signal

10-18

Fading Channels

% Compute bit error rate, taking delay into account.
% Remove first sample because of DPSK initial condition.
tx = tx(2:end); rx = rx(2:end);
% Truncate to account for channel delay.
tx_trunc = tx(1:end-delay); rx_trunc = rx(delay+1:end);
[num,ber] = biterr(tx_trunc,rx_trunc) % Bit error rate

The output below shows that the error rate is small. If the example had
not compensated for the channel delay, then the error rate would have been
close to 1/2.

num =

845

ber =

0.0169

More Information About Working with Delays. The discussion in
“Effect of Delays on Recovery of Convolutionally Interleaved Data” on page
7-10 describes two typical ways to compensate for delays. Although the
discussion there is about interleaving operations instead of channel modeling,
the techniques involving truncating and padding data are equally applicable
to channel modeling.

Quasi-Static Channel Modeling
Typically, a path gain in a fading channel changes insignificantly over a period
of 1/(100fd) seconds, where fd is the maximum Doppler shift. Because this
period corresponds to a very large number of bits in many modern wireless
data applications, assessing performance over a statistically significant
range of fading would entail simulating a prohibitively large amount of data.
Quasi-static channel modeling provides a more tractable approach, which
you can implement using these steps:

1 Generate a random channel realization using a maximum Doppler shift
of 0.

2 Process some large number of bits.

10-19

10 Channels

3 Compute error statistics.

4 Repeat the steps above many times to produce a distribution of the
performance metric.

The example below illustrates the quasi-static channel modeling approach.

M = 4; % DQPSK modulation order
numBits = 10000; % Each trial uses 10000 bits.
numTrials = 20; % Number of BER computations

% Note: In reality, numTrials would be a large number
% to get an accurate estimate of outage probabilities
% or packet error rate.
% Use 20 here just to make the example run more quickly.

% Create Rician channel object.
chan = ricianchan; % Static channel
chan.KFactor = 10; % Rician K-factor
% Because chan.ResetBeforeFiltering is 1 by default,
% FILTER resets the channel in each trial below.

% Compute error rate once for each independent trial.
for n = 1:numTrials

tx = randint(numBits,1,M); % Random bit stream
dpskSig = dpskmod(tx,M); % DPSK signal
fadedSig = filter(chan, dpskSig); % Effect of channel
rxSig = awgn(fadedSig,20); % Add Gaussian noise.
rx = dpskdemod(rxSig,M); % Demodulate.

% Compute number of symbol errors.
% Ignore first sample because of DPSK initial condition.
nErrors(n) = symerr(tx(2:end),rx(2:end))

end
per = mean(nErrors > 0) % Proportion of packets that had errors

While the example runs, the Command Window displays the growing list of
symbol error counts in the vector nErrors. It also displays the packet error
rate at the end. The sample output below shows a final value of nErrors and
omits intermediate values. Your results might vary because of randomness
in the example.

10-20

Fading Channels

nErrors =

Columns 1 through 9

0 3 0 0 0 0 0 0 0

Columns 10 through 18

0 0 0 0 36 0 0 0 0

Columns 19 through 20

0 122

per =

0.1500

More About the Quasi-Static Technique. As an example to show how the
quasi-static channel modeling approach can save computation, consider a
wireless local area network (LAN) in which the carrier frequency is 2.4 GHz,
mobile speed is 1 m/s, and bit rate is 10 Mb/s. The following expression shows
that the channel changes insignificantly over 12,500 bits:

1
100 100

10

3 10
10

8

f
c
vfd

 s 10 Mb/s s Mb/s

=
m/s









() = 







()

×
00 1 2 4

10

500
()(.)

,
 m/s GHz

 Mb/s

= 12 b

()

A traditional Monte Carlo approach for computing the error rate of this system
would entail simulating thousands of times the number of bits shown above,
perhaps tens of millions of bits. By contrast, a quasi-static channel modeling
approach would simulate a few packets at each of about 100 locations to
arrive at a spatial distribution of error rates. From this distribution one
could determine, for example, how reliable the communication link is for a
random location within the indoor space. If each simulation contains 5,000

10-21

10 Channels

bits, then 100 simulations would process half a million bits in total. This is
substantially fewer bits compared to the traditional Monte Carlo approach.

Filtering Using a Loop
The section “Configuring Channel Objects Based on Simulation Needs” on
page 10-13 indicates how to invoke the filter function multiple times while
maintaining continuity from one invocation to the next. The example below
invokes filter within a loop and uses the small data sets from successive
iterations to create an animated effect. The particular channel in this example
is a Rayleigh fading channel with two discrete major paths.

% Set up parameters.
M = 4; % QPSK modulation order
bitRate = 50000; % Data rate is 50 kb/s.
numTrials = 125; % Number of iterations of loop

% Create Rayleigh fading channel object.
ch = rayleighchan(1/bitRate,4,[0 2e-5],[0 -9]);
% Indicate that FILTER should not reset the channel
% in each iteration below.
ch.ResetBeforeFiltering = 0;

% Initialize scatter plot.
h = scatterplot(0);

% Apply channel in a loop, maintaining continuity.
% Plot only the current data in each iteration.
for n = 1:numTrials

tx = randint(500,1,M); % Random bit stream
pskSig = pskmod(tx,M); % PSK signal
fadedSig = filter(ch, pskSig); % Effect of channel

% Plot the new data from this iteration.
h = scatterplot(fadedSig,1,0,'b.',h);
axis([-1.8 1.8 -1.8 1.8]) % Adjust axis limits.
drawnow; % Refresh the image.

end

10-22

Fading Channels

The scatter plot changes with each iteration of the loop, and the exact content
varies because the fading process involves random numbers. Below are some
snapshots of typical images that the example can produce.

Sample Scatter Plot (a)

Sample Scatter Plot (b)

10-23

10 Channels

Binary Symmetric Channel
A binary symmetric channel corrupts a binary signal by reversing each bit
with a fixed probability. Such a channel can be useful for testing error-control
coding.

To model a binary symmetric channel, use the bsc function. The two input
arguments are the binary signal and the probability, p.

If you want to model a binary channel whose statistical description involves
the number of errors per codeword, then see the description of randerr in
“Random Bit Error Patterns” on page 2-5.

Example: Introducing Noise in a Convolutional Code
The example below introduces bit errors in a convolutional code with
probability 0.01.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Trellis
msg = ones(10000,1); % Data to encode
code = convenc(ones(10000,1),t); % Encode using convolutional code.
[ncode,err] = bsc(code,.01); % Introduce errors in code.
numchanerrs = sum(sum(err)) % Number of channel errors
dcode = vitdec(ncode,t,2,'trunc','hard'); % Decode.
[numsyserrs,ber] = biterr(dcode,msg) % Errors after decoding

The output below shows that the decoder corrects some, but not all, of the
errors that bsc introduced into the code. Your results might vary because the
channel errors are random.

numchanerrs =

132

numsyserrs =

27

10-24

Binary Symmetric Channel

ber =

0.0027

10-25

10 Channels

Selected Bibliography for Channels
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York, Kluwer
Academic/Plenum, 2000.

[2] Jakes, William C., ed. Microwave Mobile Communications, New York,
IEEE Press, 1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, Second
Edition, New York, Wiley, 1993.

10-26

11

Equalizers

Time-dispersive channels can cause intersymbol interference (ISI). For
example, in a multipath scattering environment, the receiver sees delayed
versions of a symbol transmission, which can interfere with other symbol
transmissions. An equalizer attempts to mitigate ISI and thus improve the
receiver’s performance. This chapter describes the equalizer features of the
Communications Toolbox, in the sections listed below.

“Equalizer Features of the Toolbox”
(p. 11-2)

Equalizer classes and algorithms
that the toolbox supports

“Overview of Adaptive Equalizer
Classes” (p. 11-3)

Overview of the supported classes of
adaptive equalizers

“Using Adaptive Equalizer Functions
and Objects” (p. 11-8)

Overview of steps for equalizing a
signal using an adaptive equalizer

“Specifying an Adaptive Algorithm”
(p. 11-10)

Describing in MATLAB the kind of
adaptive algorithm you want to use
in an equalizer

“Specifying an Adaptive Equalizer”
(p. 11-13)

Creating an equalizer object to
describe the equalizer you want to
use

“Using Adaptive Equalizers” (p.
11-17)

Equalizing a signal by applying an
equalizer object

“Using MLSE Equalizers” (p. 11-28) Equalizing a signal using an MLSE
equalizer

“Selected Bibliography for
Equalizers” (p. 11-35)

Works containing background
information about equalizers

11 Equalizers

Equalizer Features of the Toolbox
This toolbox supports these distinct classes of equalizers, each with a different
overall structure:

• Linear equalizers, a class that is further divided into these categories:

- Symbol-spaced equalizers

- Fractionally spaced equalizers (FSE)

• Decision-feedback equalizers (DFE)

• MLSE (Maximum-Likelihood Sequence Estimation) equalizer that uses the
Viterbi algorithm. To learn how to use the MLSE equalizer capabilities, see
“Using MLSE Equalizers” on page 11-28.

Linear and decision-feedback equalizers are adaptive equalizers that use an
adaptive algorithm when operating. For each of the adaptive equalizer classes
listed above, this toolbox supports these adaptive algorithms:

• Least mean square (LMS)

• Signed LMS, including these types: sign LMS, signed regressor LMS,
and sign-sign LMS

• Normalized LMS

• Variable-step-size LMS

• Recursive least squares (RLS)

• Constant modulus algorithm (CMA)

To learn how to use the adaptive equalizer capabilities, start with “Using
Adaptive Equalizer Functions and Objects” on page 11-8. For brief background
material on the supported adaptive equalizer types, see “Overview of Adaptive
Equalizer Classes” on page 11-3. For more detailed background material, see
the works listed in “Selected Bibliography for Equalizers” on page 11-35.

11-2

Overview of Adaptive Equalizer Classes

Overview of Adaptive Equalizer Classes
These topics give some background information about the supported classes of
adaptive equalizers:

• “Symbol-Spaced Equalizers” on page 11-3

• “Fractionally Spaced Equalizers” on page 11-5

• “Decision-Feedback Equalizers” on page 11-6

For more detailed background material, see the works listed in “Selected
Bibliography for Equalizers” on page 11-35. For more information about
particular adaptive algorithms, see the reference pages for the corresponding
functions: lms, signlms, normlms, varlms, rls, cma.

Symbol-Spaced Equalizers
A symbol-spaced linear equalizer consists of a tapped delay line that stores
samples from the input signal. Once per symbol period, the equalizer outputs
a weighted sum of the values in the delay line and updates the weights
to prepare for the next symbol period. This class of equalizer is called
“symbol-spaced” because the sample rates of the input and output are equal.

Below is a schematic of a symbol-spaced linear equalizer with N weights,
where the symbol period is T.

11-3

11 Equalizers

TInput

Weight
Setting

+ Output

TTT
u1 u2 u3 uL

y

Decision
Device

d

w2 w3w1 wL

yd

Error
Calculation

e Training

Updating the Set of Weights
The algorithms for the Weight Setting and Error Calculation blocks in the
schematic are determined by the adaptive algorithm chosen from the list in
“Equalizer Features of the Toolbox” on page 11-2. The new set of weights
depends on these quantities:

• The current set of weights

• The input signal

• The output signal

• For adaptive algorithms other than CMA, a reference signal, d, whose
characteristics depend on the operation mode of the equalizer

Reference Signal and Operation Modes
The table below briefly describes the nature of the reference signal for each
of the two operation modes.

11-4

Overview of Adaptive Equalizer Classes

Operation Mode of
Equalizer

Reference Signal

Training mode Preset known transmitted sequence

Decision-directed mode Detected version of the output signal,
denoted by yd in the schematic

In typical applications, the equalizer begins in training mode to gather
information about the channel, and later switches to decision-directed mode.

Error Calculation
The error calculation operation produces a signal given by the expression
below, where R is a constant related to the signal constellation.

e
d y

y R y
=

−

−

 Algorithms other than CMA

 CMA ()2







Fractionally Spaced Equalizers
A fractionally spaced equalizer is a linear equalizer that is similar to a
symbol-spaced linear equalizer, as described in “Symbol-Spaced Equalizers”
on page 11-3. By contrast, however, a fractionally spaced equalizer receives K
input samples before it produces one output sample and updates the weights,
where K is an integer. In many applications, K is 2. The output sample rate is
1/T, while the input sample rate is K/T. The weight-updating occurs at the
output rate, which is the slower rate.

Below is a schematic of a fractionally spaced equalizer.

11-5

11 Equalizers

T/KInput

Weight
Setting

+ Output

T/KT/KT/K
Rate K/T

Rate 1/T

u1 u2 u3 uL

y

Decision
Device

d

w2 w3w1 wL

yd

Error
Calculation

e Training

Decision-Feedback Equalizers
A decision-feedback equalizer is a nonlinear equalizer that contains a forward
filter and a feedback filter. The forward filter is similar to the linear equalizer
described in “Symbol-Spaced Equalizers” on page 11-3, while the feedback
filter contains a tapped delay line whose inputs are the decisions made on the
equalized signal. The purpose of a DFE is to cancel intersymbol interference
while minimizing noise enhancement. By contrast, noise enhancement is a
typical problem with the linear equalizers described earlier.

Below is a schematic of a fractionally spaced DFE with L forward weights and
N-L feedback weights. The forward filter is at the top and the feedback filter
is at the bottom. If K is 1, then the result is a symbol-spaced DFE instead of
a fractionally spaced DFE.

11-6

Overview of Adaptive Equalizer Classes

T/KInput

Weight
Setting +

Output

T/KT/KT/K
Rate K/T

Rate 1/T

u1 u2 u3 uL

y

Decision
Device

d

w2 w3w1 wL

wL+2wN wL+1

T TTT
uN uL+2 uL+1

yd

Error
Calculation

e

Training

In each symbol period, the equalizer receives K input samples at the forward
filter, as well as one decision or training sample at the feedback filter. The
equalizer then outputs a weighted sum of the values in the forward and
feedback delay lines, and updates the weights to prepare for the next symbol
period.

Note The algorithm for the Weight Setting block in the schematic jointly
optimizes the forward and feedback weights. Joint optimization is especially
important for the RLS algorithm.

11-7

11 Equalizers

Using Adaptive Equalizer Functions and Objects
This section gives an overview of the process you typically use in MATLAB to
take advantage of the adaptive equalizer capabilities. The MLSE equalizer
has a different interface, described in “Using MLSE Equalizers” on page 11-28.

Basic Procedure for Equalizing a Signal
Equalizing a signal using the Communications Toolbox involves these steps:

1 Create an equalizer object that describes the equalizer class and the
adaptive algorithm that you want to use. An equalizer object is a type of
MATLAB variable that contains information about the equalizer, such as
the name of the equalizer class, the name of the adaptive algorithm, and
the values of the weights.

2 Adjust properties of the equalizer object, if necessary, to tailor it to your
needs. For example, you can change the number of weights or the values
of the weights.

3 Apply the equalizer object to the signal that you want to equalize, using the
equalize function.

Example Illustrating the Basic Procedure
This code briefly illustrates the steps in the basic procedure above.

% Build a set of test data.
x = pskmod(randint(1000,1),2); % BPSK symbols
rxsig = conv(x,[1 0.8 0.3]); % Received signal
% Create an equalizer object.
eqlms = lineareq(8,lms(0.03));
% Change the reference tap index in the equalizer.
eqlms.RefTap = 4;
% Apply the equalizer object to a signal.
y = equalize(eqlms,rxsig,x(1:200));

In this example, eqlms is an equalizer object that describes a linear LMS
equalizer having 10 weights and a step size of 0.003. At first, the reference
tap index in the equalizer has a default value, but assigning a new value
to the property eqlms.RefTap changes this index. Finally, the equalize

11-8

Using Adaptive Equalizer Functions and Objects

command uses the eqlms object to equalize the signal rxsig using the training
sequence x(1:200).

Learning More About Adaptive Equalizer Functions
Keeping the basic procedure in mind, you can read other portions of this
chapter to learn more details about

• How to create objects that represent different classes of adaptive equalizers
and different adaptive algorithms

• How to adjust properties of an adaptive equalizer or properties of an
adaptive algorithm

• How to equalize signals using an adaptive equalizer object

11-9

11 Equalizers

Specifying an Adaptive Algorithm
Configuring an equalizer involves choosing an adaptive algorithm and
indicating your choice when creating an equalizer object in MATLAB.
This section includes information that might help you choose an adaptive
algorithm. It then describes how to indicate your choice and how to access
properties of an adaptive algorithm that you have chosen.

Choosing an Adaptive Algorithm
Although the best choice of adaptive algorithm might depend on your
individual situation, here are some generalizations that might influence
your choice:

• The LMS algorithm executes quickly but converges slowly, and its
complexity grows linearly with the number of weights.

• The RLS algorithm converges quickly, but its complexity grows with the
square of the number of weights, roughly speaking. This algorithm can
also be unstable when the number of weights is large.

• The various types of signed LMS algorithms simplify hardware
implementation.

• The normalized LMS and variable-step-size LMS algorithms are more
robust to variability of the input signal’s statistics (such as power).

• The Constant modulus algorithm is useful when no training signal is
available, and works best for constant-modulus modulations such as PSK.

However, if CMA has no additional side information, it can introduce phase
ambiguity. For example, CMA might find weights that produce a perfect
QPSK constellation but might introduce a phase rotation of 90, 180, or
270 degrees. Alternatively, differential modulation can be used to avoid
phase ambiguity.

Details about the adaptive algorithms are in the references listed in “Selected
Bibliography for Equalizers” on page 11-35.

11-10

Specifying an Adaptive Algorithm

Indicating a Choice of Adaptive Algorithm
After you have chosen the adaptive algorithm you want to use, you must
indicate your choice when creating the equalizer object mentioned in “Basic
Procedure for Equalizing a Signal” on page 11-8. The functions listed in the
table below provide a way to indicate your choice of adaptive algorithm.

Adaptive Algorithm Function Type of Adaptive Algorithm

lms Least mean square (LMS)

signlms Signed LMS, signed regressor LMS,
sign-sign LMS

normlms Normalized LMS

varlms Variable-step-size LMS

rls Recursive least squares (RLS)

cma Constant modulus algorithm (CMA)

Two typical ways to use a function from the table are as follows:

• Use the function in an inline expression when creating the equalizer object.

For example, the code below uses the lms function inline when creating
an equalizer object.

eqlms = lineareq(10,lms(0.003));

• Use the function to create a variable in the MATLAB workspace and then
use that variable when creating the equalizer object. The variable is called
an adaptive algorithm object.

For example, the code below creates an adaptive algorithm object named
alg that represents the adaptive algorithm, and then uses alg when
creating an equalizer object.

alg = lms(0.003);
eqlms = lineareq(10,alg);

11-11

11 Equalizers

Note If you want to create an adaptive algorithm object by duplicating
an existing one and then changing its properties, then see the important
note in “Duplicating and Copying Objects” on page 11-14 about the use of
copy versus the = operator.

In practice, the two ways are equivalent when your goal is to create an
equalizer object or to equalize a signal.

Accessing Properties of an Adaptive Algorithm
The adaptive algorithm functions not only provide a way to indicate your
choice of adaptive algorithm, but also let you specify certain properties of
the algorithm. For information about what each property of an adaptive
algorithm object means, see the reference page for the lms, signlms, normlms,
varlms, rls, or cma function.

To view or change any properties of an adaptive algorithm, use the syntax
described for channel objects in “Viewing Object Properties” on page 10-9 and
“Changing Object Properties” on page 10-10.

11-12

Specifying an Adaptive Equalizer

Specifying an Adaptive Equalizer
As mentioned earlier in “Basic Procedure for Equalizing a Signal” on page
11-8, you must create an equalizer object before you can equalize a signal.
This section describes how to define an equalizer object and how to access its
properties.

Defining an Equalizer Object
To create an equalizer object, use one of the functions listed in the table below.

Function Type of Equalizer

lineareq Linear equalizer (symbol-spaced or
fractionally spaced)

dfe Decision-feedback equalizer

For example, the code below creates three equalizer objects: one representing
a symbol-spaced linear RLS equalizer having 10 weights, one representing a
fractionally spaced linear RLS equalizer having 10 weights and two samples
per symbol, and one representing a decision-feedback RLS equalizer having 3
weights in the feedforward filter and 2 weights in the feedback filter.

% Create equalizer objects of different types.
eqlin = lineareq(10,rls(0.3)); % Symbol-spaced linear
eqfrac = lineareq(10,rls(0.3),[-1 1],2); % Fractionally spaced linear
eqdfe = dfe(3,2,rls(0.3)); % DFE

Although the lineareq and dfe functions have different syntaxes, they both
require an input argument that represents an adaptive algorithm. To learn
how to represent an adaptive algorithm or how to vary properties of the
adaptive algorithm, see “Specifying an Adaptive Algorithm” on page 11-10.

Each of the equalizer objects created above is a valid input argument for the
equalize function. To learn how to use the equalize function to equalize a
signal, see “Using Adaptive Equalizers” on page 11-17.

11-13

11 Equalizers

Duplicating and Copying Objects
Another way to create an object is to duplicate an existing object and then
adjust the properties of the new object, if necessary. If you do this, it is
important that you use a copy command such as

c2 = copy(c1); % Copy c1 to create an independent c2.

instead of c2 = c1. The copy command creates a copy of c1 that is
independent of c1. By contrast, the command c2 = c1 creates c2 as merely a
reference to c1, so that c1 and c2 always have indistinguishable content.

Accessing Properties of an Equalizer
An equalizer object has numerous properties that record information about
the equalizer. Properties can be related to

• The structure of the equalizer (for example, the number of weights).

• The adaptive algorithm that the equalizer uses (for example, the step
size in the LMS algorithm). When you create the equalizer object using
lineareq or dfe, the function copies certain properties from the algorithm
object to the equalizer object. However, the equalizer object does not retain
a connection to the algorithm object.

• Information about the equalizer’s current state (for example, the values
of the weights). The equalize function automatically updates these
properties when it operates on a signal.

• Instructions for operating on a signal (for example, whether the equalizer
should reset itself before starting the equalization process).

For information about what each equalizer property means, see the reference
page for the lineareq or dfe function.

To view or change any properties of an equalizer object, use the syntax
described for channel objects in “Viewing Object Properties” on page 10-9 and
“Changing Object Properties” on page 10-10.

Linked Properties of an Equalizer Object
Some properties of an equalizer object are related to each other such that
when one property’s value changes, another property’s value must adjust, or

11-14

Specifying an Adaptive Equalizer

else the equalizer object would fail to describe a valid equalizer. For example,
in a linear equalizer, the nWeights property is the number of weights, while
the Weights property is the value of the weights. If you change the value of
nWeights, then the value of Weights must adjust so that its vector length is
the new value of nWeights.

To find out which properties are related and how MATLAB compensates
automatically when you make certain changes in property values, see the
reference page for lineareq or dfe.

The example below illustrates that when you change the value of nWeights,
MATLAB automatically changes the values of Weights and WeightInputs to
make their vector lengths consistent with the new value of nWeights. Because
the example uses the variable-step-size LMS algorithm, StepSize is a vector
(not a scalar) and MATLAB changes its vector length to maintain consistency
with the new value of nWeights.

eqlvar = lineareq(10,varlms(0.01,0.01,0,1)) % Create equalizer object.
eqlvar.nWeights = 8 % Change the number of weights from 10 to 8.
% MATLAB automatically changes the sizes of eqlvar.Weights and
% eqlvar.WeightInputs.

The output below displays all the properties of the equalizer object before
and after the change in the value of the nWeights property. Notice that in
the second listing of properties, the nWeights, Weights, WeightInputs, and
StepSize properties all have different values compared to the first listing of
properties.

eqlvar =

EqType: 'Linear Equalizer'
AlgType: 'Variable Step Size LMS'

nWeights: 10
nSampPerSym: 1

RefTap: 1
SigConst: [-1 1]
InitStep: 0.0100
IncStep: 0.0100
MinStep: 0
MaxStep: 1

LeakageFactor: 1

11-15

11 Equalizers

StepSize: [1x10 double]
Weights: [0 0 0 0 0 0 0 0 0 0]

WeightInputs: [0 0 0 0 0 0 0 0 0 0]
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

eqlvar =

EqType: 'Linear Equalizer'
AlgType: 'Variable Step Size LMS'

nWeights: 8
nSampPerSym: 1

RefTap: 1
SigConst: [-1 1]
InitStep: 0.0100
IncStep: 0.0100
MinStep: 0
MaxStep: 1

LeakageFactor: 1
StepSize: [1x8 double]
Weights: [0 0 0 0 0 0 0 0]

WeightInputs: [0 0 0 0 0 0 0 0]
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

11-16

Using Adaptive Equalizers

Using Adaptive Equalizers
This section describes how to equalize a signal by using the equalize function
to apply an adaptive equalizer object to the signal. The equalize function also
updates the equalizer This section assumes that you have already created an
adaptive equalizer object, as described in “Specifying an Adaptive Equalizer”
on page 11-13. The topics in this section are as follows:

• “Equalizing Using a Training Sequence” on page 11-17

• “Equalizing in Decision-Directed Mode” on page 11-19

• “Delays from Equalization” on page 11-21

• “Equalizing Using a Loop” on page 11-22

For examples that complement those in this section, see the Adaptive
Equalization Simulation demo (part I and part II).

Equalizing Using a Training Sequence
In typical applications, an equalizer begins by using a known sequence of
transmitted symbols when adapting the equalizer weights. The known
sequence, called a training sequence, enables the equalizer to gather
information about the channel characteristics. After the equalizer finishes
processing the training sequence, it adapts the equalizer weights in
decision-directed mode using a detected version of the output signal. To use a
training sequence when invoking the equalize function, include the symbols
of the training sequence as an input vector.

Note As an exception, CMA equalizers do not use a training sequence. If
an equalizer object is based on CMA, then you should not include a training
sequence as an input vector.

The code below illustrates how to use equalize with a training sequence.
The training sequence in this case is just the beginning of the transmitted
message.

11-17

matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/adapteqpt1.html%27%5D%29
matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/adapteqpt2.html%27%5D%29

11 Equalizers

% Set up parameters and signals.

M = 4; % Alphabet size for modulation

msg = randint(1500,1,M); % Random message

modmsg = pskmod(msg,M); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients

filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Equalize the received signal.

eq1 = lineareq(8, lms(0.01)); % Create an equalizer object.

eq1.SigConst = pskmod([0:M-1],M); % Set signal constellation.

[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

% Plot signals.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;

scatterplot(symbolest,1,trainlen,'g.',h);

scatterplot(eq1.SigConst,1,0,'k*',h);

legend('Filtered signal','Equalized signal',...

'Ideal signal constellation');

hold off;

% Compute error rates with and without equalization.

demodmsg_noeq = pskdemod(filtmsg,M); % Demodulate unequalized signal.

demodmsg = pskdemod(yd,M); % Demodulate detected signal from equalizer.

[nnoeq,rnoeq] = symerr(demodmsg_noeq(trainlen+1:end),...

msg(trainlen+1:end));

[neq,req] = symerr(demodmsg(trainlen+1:end),...

msg(trainlen+1:end));

disp('Symbol error rates with and without equalizer:')

disp([req rnoeq])

The example goes on to determine how many errors occur in trying to recover
the modulated message with and without the equalizer. The symbol error
rates, below, show that the equalizer improves the performance significantly.

Symbol error rates with and without equalizer:
0 0.3410

The example also creates a scatter plot that shows the signal before and after
equalization, as well as the signal constellation for QPSK modulation. Notice

11-18

Using Adaptive Equalizers

from the plot that the points of the equalized signal are clustered more closely
around the points of the signal constellation.

Equalizing in Decision-Directed Mode
Decision-directed mode means that the equalizer uses a detected version of
its output signal when adapting the weights. Adaptive equalizers typically
start with a training sequence (as mentioned in “Equalizing Using a
Training Sequence” on page 11-17) and switch to decision-directed mode
after exhausting all symbols in the training sequence. CMA equalizers are
an exception, using neither training mode nor decision-directed mode. For
non-CMA equalizers, the equalize function operates in decision-directed
mode when one of these conditions is true:

• The syntax does not include a training sequence.

• The equalizer has exhausted all symbols in the training sequence and still
has more input symbols to process.

11-19

11 Equalizers

The example in “Equalizing Using a Training Sequence” on page 11-17 uses
training mode when processing the first trainlen symbols of the input signal,
and decision-directed mode thereafter. The example below discusses another
scenario.

Example: Equalizing Multiple Times, Varying the Mode
If you invoke equalize multiple times with the same equalizer object to
equalize a series of signal vectors, then you might use a training sequence
the first time you call the function and omit the training sequence in
subsequent calls. Each iteration of the equalize function after the first
one operates completely in decision-directed mode. However, because the
ResetBeforeFiltering property of the equalizer object is set to 0, the
equalize function uses the existing state information in the equalizer object
when starting each iteration’s equalization operation. As a result, the training
affects all equalization operations, not just the first.

The code below illustrates this approach. Notice that the first call to equalize
uses a training sequence as an input argument, while the second call to
equalize omits a training sequence.

M = 4; % Alphabet size for modulation
msg = randint(1500,1,M); % Random message
modmsg = pskmod(msg,M); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Set up equalizer.
eqlms = lineareq(8, lms(0.01)); % Create an equalizer object.
eqlms.SigConst = pskmod([0:M-1],M); % Set signal constellation.
% Maintain continuity between calls to equalize.
eqlms.ResetBeforeFiltering = 0;

% Equalize the received signal, in pieces.
% 1. Process the training sequence.
s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));
% 2. Process some of the data in decision-directed mode.
s2 = equalize(eqlms,filtmsg(trainlen+1:800));
% 3. Process the rest of the data in decision-directed mode.

11-20

Using Adaptive Equalizers

s3 = equalize(eqlms,filtmsg(801:end));
s = [s1; s2; s3]; % Full output of equalizer

Delays from Equalization
For proper equalization using adaptive algorithms other than CMA, you
should set the reference tap so that it exceeds the delay, in symbols, between
the transmitter’s modulator output and the equalizer input. When this
condition is satisfied, the total delay between the modulator output and the
equalizer output is equal to

(RefTap-1)/nSampPerSym

symbols. Because the channel delay is typically unknown, a common practice
is to set the reference tap to the center tap in a linear equalizer, or the center
tap of the forward filter in a decision-feedback equalizer.

For CMA equalizers, the expression above does not apply because a CMA
equalizer has no reference tap. If you need to know the delay, you can find
it empirically after the equalizer weights have converged. Use the xcorr
function to examine cross-correlations of the modulator output and the
equalizer output.

Techniques for Working with Delays
Here are some typical ways to take a delay of D into account by padding or
truncating data:

• Pad your original data with D extra symbols at the end. Before comparing
the original data with the received data, omit the first D symbols of the
received data. In this approach, all the original data (not including the
padding) is accounted for in the received data.

• Before comparing the original data with the received data, omit the last
D symbols of the original data and the first D symbols of the received
data. In this approach, some of the original symbols are not accounted for
in the received data.

The example below illustrates the latter approach. For an example that
illustrates both approaches in the context of interleavers, see “Delays of
Convolutional Interleavers” on page 7-9.

11-21

11 Equalizers

M = 2; % Use BPSK modulation for this example.

msg = randint(1000,1,M); % Random data

modmsg = pskmod(msg,M); % Modulate.

trainlen = 100; % Length of training sequence

trainsig = modmsg(1:trainlen); % Training sequence

% Define an equalizer and equalize the received signal.

eqlin = lineareq(3,normlms(.0005,.0001),pskmod(0:M-1,M));

eqlin.RefTap = 2; % Set reference tap of equalizer.

[eqsig,detsym] = equalize(eqlin,modmsg,trainsig); % Equalize.

detmsg = pskdemod(detsym,M); % Demodulate the detected signal.

% Compensate for delay introduced by RefTap.

D = (eqlin.RefTap -1)/eqlin.nSampPerSym;

trunc_detmsg = detmsg(D+1:end); % Omit first D symbols of equalized data.

trunc_msg = msg(1:end-D); % Omit last D symbols.

% Compute bit error rate, ignoring training sequence.

[numerrs,ber] = biterr(trunc_msg(trainlen+1:end),...

trunc_detmsg(trainlen+1:end))

The output is below.

numerrs =

0

ber =

0

Equalizing Using a Loop
If your data is partitioned into a series of vectors (that you process within a
loop, for example), then you can invoke the equalize function multiple times,
saving the equalizer’s internal state information for use in a subsequent
invocation. In particular, the final values of the WeightInputs and Weights
properties in one equalization operation should be the initial values in the

11-22

Using Adaptive Equalizers

next equalization operation. This section gives an example, followed by more
general procedures for equalizing within a loop.

Example: Adaptive Equalization Within a Loop
The example below illustrates how to use equalize within a loop, varying the
equalizer between iterations. Because the example is long, this discussion
presents it in these steps:

• “Initializing Variables” on page 11-23

• “Simulating the System Using a Loop” on page 11-24

If you want to equalize iteratively while potentially changing equalizers
between iterations, then the procedure in “Changing the Equalizer Between
Iterations” on page 11-26 should help you generalize from this example to
other cases.

Initializing Variables. The beginning of the example defines parameters
and creates three equalizer objects:

• An RLS equalizer object.

• An LMS equalizer object.

• A variable, eq_current, that points to the equalizer object to use in the
current iteration of the loop. Initially, this points to the RLS equalizer
object. After the second iteration of the loop, eq_current is redefined to
point to the LMS equalizer object.

% Set up parameters.

M = 16; % Alphabet size for modulation

sigconst = qammod(0:M-1,M); % Signal constellation for 16-QAM

chan = [1 0.45 0.3+0.2i]; % Channel coefficients

% Set up equalizers.

eqrls = lineareq(6, rls(0.99,0.1)); % Create an RLS equalizer object.

eqrls.SigConst = sigconst; % Set signal constellation.

eqrls.ResetBeforeFiltering = 0; % Maintain continuity between iterations.

eqlms = lineareq(6, lms(0.003)); % Create an LMS equalizer object.

eqlms.SigConst = sigconst; % Set signal constellation.

eqlms.ResetBeforeFiltering = 0; % Maintain continuity between iterations.

11-23

11 Equalizers

eq_current = eqrls; % Point to RLS for first iteration.

Simulating the System Using a Loop. The next portion of the example is
a loop that

• Generates a signal to transmit and selects a portion to use as a training
sequence in the first iteration of the loop

• Introduces channel distortion

• Equalizes the distorted signal using the chosen equalizer for this iteration,
retaining the final state and weights for later use

• Plots the distorted and equalized signals, for comparison

• Switches to an LMS equalizer between the second and third iterations

% Main loop

for jj = 1:4

msg = randint(500,1,M); % Random message

modmsg = qammod(msg,M); % Modulate using 8-QAM.

% Set up training sequence for first iteration.

if jj == 1

ltr = 200; trainsig = modmsg(1:ltr);

else

% Use decision-directed mode after first iteration.

ltr = 0; trainsig = [];

end

% Introduce channel distortion.

filtmsg = filter(chan,1,modmsg);

% Equalize the received signal.

s = equalize(eq_current,filtmsg,trainsig);

% Plot signals.

h = scatterplot(filtmsg(ltr+1:end),1,0,'bx'); hold on;

scatterplot(s(ltr+1:end),1,0,'g.',h);

scatterplot(sigconst,1,0,'k*',h);

legend('Received signal','Equalized signal','Signal constellation');

title(['Iteration #' num2str(jj) ' (' eq_current.AlgType ')']);

11-24

Using Adaptive Equalizers

hold off;

% Switch from RLS to LMS after second iteration.

if jj == 2

eqlms.WeightInputs = eq_current.WeightInputs; % Copy final inputs.

eqlms.Weights = eq_current.Weights; % Copy final weights.

eq_current = eqlms; % Make eq_current point to eqlms.

end

end

The example produces one scatter plot for each iteration, indicating the
iteration number and the adaptive algorithm in the title. A sample plot is
below. Your plot might look different because the example uses random
numbers.

Procedures for Equalizing Within a Loop
This section describes two procedures for equalizing within a loop. The first
procedure uses the same equalizer in each iteration, while the second is useful
if you want to change the equalizer between iterations.

11-25

11 Equalizers

Using the Same Equalizer in Each Iteration. The typical procedure for
using equalize within a loop is as follows:

1 Before the loop starts, create the equalizer object that you want to use in
the first iteration of the loop.

2 Set the equalizer object’s ResetBeforeFiltering property to 0 to maintain
continuity between successive invocations of equalize.

3 Inside the loop, invoke equalize using a syntax like one of these:

y = equalize(eqz,x,trainsig);
y = equalize(eqz,x);

The equalize function updates the state and weights of the equalizer
at the end of the current iteration. In the next iteration, the function
continues from where it finished in the previous iteration because
ResetBeforeFiltering is set to 0.

This procedure is similar to the one used in “Example: Equalizing Multiple
Times, Varying the Mode” on page 11-20. That example uses equalize
multiple times but not within a loop.

Changing the Equalizer Between Iterations. In some applications,
you might want to modify the adaptive algorithm between iterations. For
example, you might use a CMA equalizer for the first iteration and an LMS
or RLS equalizer in subsequent iterations. The procedure below gives one
way to accomplish this, roughly following the example in “Example: Adaptive
Equalization Within a Loop” on page 11-23:

1 Before the loop starts, create the different kinds of equalizer objects that
you want to use during various iterations of the loop.

For example, create one CMA equalizer object, eqcma, and one LMS
equalizer object, eqlms.

2 For each equalizer object, set the ResetBeforeFiltering property to 0 to
maintain continuity between successive invocations of equalize.

3 Create a variable eq_current that points to the equalizer object that you
want to use for the first iteration. Use = to establish the connection so that
the two objects get updated together, as below.

11-26

Using Adaptive Equalizers

eq_current = eqcma; % Point to eqcma.

The purpose of eq_current is to represent the equalizer used in each
iteration, where you can switch equalizers from one iteration to the next by
using a command like eq_current = eqlms. The example illustrates this
approach near the end of its loop.

4 Inside the loop, perform these steps:

a Invoke equalize using a syntax like one of these:

y = equalize(eq_current,x,trainsig);
y = equalize(eq_current,x);

b Copy the values of the WeightInputs and Weights properties from
eq_current to the equalizer object that you want to use for the next
iteration. Use dot notation. For example,

eqlms.WeightInputs = eq_current.WeightInputs;
eqlms.Weights = eq_current.Weights;

c Redefine eq_current to point to the equalizer object that you want to
use for the next iteration, using =. Now eq_current is set up for the next
iteration, because it represents the new kind of equalizer but retains the
old values for the state and weights.

The reason for creating multiple equalizer objects and then copying the state
and weights, instead of simply changing the equalizer class or adaptive
algorithm in a single equalizer object, is that the class and adaptive algorithm
properties of an equalizer object are fixed.

11-27

11 Equalizers

Using MLSE Equalizers
The mlseeq function uses the Viterbi algorithm to equalize a signal through
a dispersive channel. The function receives a baseband linearly modulated
input signal and outputs the maximum likelihood sequence estimate of the
signal, using an estimate of the channel modeled as a finite input response
(FIR) filter.

The function decodes the received signal using these steps:

1 Applies the FIR filter, corresponding to the channel estimate, to the
symbols in the input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state
metric, which are the numbers assigned to the symbols at each step of the
Viterbi algorithm. The metrics are based on Euclidean distance.

3 Outputs the maximum likelihood sequence estimate of the signal, as a
sequence of complex numbers corresponding to the constellation points of
the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but
is computationally intensive. These topics describe how to use the MLSE
equalizer capabilities in this toolbox:

• “Equalizing a Vector Signal” on page 11-28

• “Equalizing in Continuous Operation Mode” on page 11-29

• “Using a Preamble or Postamble” on page 11-33

For background material about MLSE equalizers, see the works listed in
“Selected Bibliography for Equalizers” on page 11-35.

Equalizing a Vector Signal
In its simplest form, the mlseeq function equalizes a vector of modulated
data when you specify the estimated coefficients of the channel (modeled
as an FIR filter), the signal constellation for the modulation type, and the
traceback depth that you want the Viterbi algorithm to use. Larger values for
the traceback depth can improve the results from the equalizer but increase
the computation time.

11-28

Using MLSE Equalizers

An example of the basic syntax for mlseeq is below.

M = 4; const = pskmod([0:M-1],M); % 4-PSK constellation
msg = pskmod([1 2 2 0 3 1 3 3 2 1 0 2 3 0 1]',M); % Modulated message
chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
tblen = 10; % Traceback depth for equalizer
chanest = chcoeffs; % Assume the channel is known exactly.
msgEq = mlseeq(filtmsg,chanest,const,tblen,'rst'); % Equalize.

The mlseeq function has two operation modes:

• Continuous operation mode enables you to process a series of vectors
using repeated calls to mlseeq, where the function saves its internal state
information from one call to the next. To learn more, see “Equalizing in
Continuous Operation Mode” on page 11-29.

• Reset operation mode enables you to specify a preamble and postamble that
accompany your data. To learn more, see “Using a Preamble or Postamble”
on page 11-33.

If you are not processing a series of vectors and do not need to specify a
preamble or postamble, then the operation modes are nearly identical.
However, they differ in that continuous operation mode incurs a delay,
while reset operation mode does not. The example above could have used
either mode, except that substituting continuous operation mode would have
produced a delay in the equalized output. To learn more about the delay in
continuous operation mode, see “Delays in Continuous Operation Mode” on
page 11-30.

Equalizing in Continuous Operation Mode
If your data is partitioned into a series of vectors (that you process within a
loop, for example), then continuous operation mode is an appropriate way to
use the mlseeq function. In continuous operation mode, mlseeq can save
its internal state information for use in a subsequent invocation and can
initialize using previously stored state information. To choose continuous
operation mode, use 'cont' as an input argument when invoking mlseeq.

11-29

11 Equalizers

Note Continuous operation mode incurs a delay, as described in “Delays in
Continuous Operation Mode” on page 11-30. Also, continuous operation mode
cannot accommodate a preamble or postamble.

Procedure for Continuous Operation Mode
The typical procedure for using continuous mode within a loop is as follows:

1 Before the loop starts, create three empty matrix variables (for example,
sm, ts, ti) that will eventually store the state metrics, traceback states,
and traceback inputs for the equalizer.

2 Inside the loop, invoke mlseeq using a syntax like

[y,sm,ts,ti] = mlseeq(x,chcoeffs,const,tblen,'cont',nsamp,sm,ts,ti);

Using sm, ts, and ti as input arguments causes mlseeq to continue from
where it finished in the previous iteration. Using sm, ts, and ti as output
arguments causes mlseeq to update the state information at the end
of the current iteration. In the first iteration, sm, ts, and ti start as
empty matrices, so the first invocation of the mlseeq function initializes
the metrics of all states to 0.

Delays in Continuous Operation Mode
Continuous operation mode with a traceback depth of tblen incurs an output
delay of tblen symbols. This means that the first tblen output symbols
are unrelated to the input signal, while the last tblen input symbols are
unrelated to the output signal. For example, the command below uses a
traceback depth of 3, and the first 3 output symbols are unrelated to the
input signal of ones(1,10).

y = mlseeq(ones(1,10),1,[-7:2:7],3,'cont')
y =

-7 -7 -7 1 1 1 1 1 1 1

Keeping track of delays from different portions of a communication system
is important, especially if you compare signals to compute error rates. The

11-30

Using MLSE Equalizers

example in “Example: Continuous Operation Mode” on page 11-31 illustrates
how to take the delay into account when computing an error rate.

Example: Continuous Operation Mode
The example below illustrates the procedure for using continuous operation
mode within a loop. Because the example is long, this discussion presents
it in multiple steps:

• “Initializing Variables” on page 11-31

• “Simulating the System Using a Loop” on page 11-31

• “Computing an Error Rate and Plotting Results” on page 11-32

Initializing Variables. The beginning of the example defines parameters,
initializes the state variables sm, ts, and ti, and initializes variables that
accumulate results from each iteration of the loop.

n = 200; % Number of symbols in each iteration
numiter = 25; % Number of iterations
M = 4; % Use 4-PSK modulation.
const = pskmod(0:M-1,M); % PSK constellation
chcoeffs = [1 ; 0.25]; % Channel coefficients
chanest = chcoeffs; % Channel estimate
tblen = 10; % Traceback depth for equalizer
nsamp = 1; % Number of input samples per symbol
sm = []; ts = []; ti = []; % Initialize equalizer data.
% Initialize cumulative results.
fullmodmsg = []; fullfiltmsg = []; fullrx = [];

Simulating the System Using a Loop. The middle portion of the example
is a loop that generates random data, modulates it using baseband PSK
modulation, and filters it. Finally, mlseeq equalizes the filtered data. The
loop also updates the variables that accumulate results from each iteration
of the loop.

for jj = 1:numiter
msg = randint(n,1,M); % Random signal vector
modmsg = pskmod(msg,M); % PSK-modulated signal
filtmsg = filter(chcoeffs,1,modmsg); % Filtered signal

11-31

11 Equalizers

% Equalize, initializing from where the last iteration
% finished, and remembering final data for the next iteration.
[rx sm ts ti] = mlseeq(filtmsg,chanest,const,tblen,...

'cont',nsamp,sm,ts,ti);

% Update vectors with cumulative results.
fullmodmsg = [fullmodmsg; modmsg];
fullfiltmsg = [fullfiltmsg; filtmsg];
fullrx = [fullrx; rx];

end

Computing an Error Rate and Plotting Results. The last portion of
the example computes the symbol error rate from all iterations of the loop.
Notice that the symerr function compares selected portions of the received
and transmitted signals, not the entire signals. Because continuous operation
mode incurs a delay whose length in samples is the traceback depth (tblen)
of the equalizer, it is necessary to exclude the first tblen samples from the
received signal and the last tblen samples from the transmitted signal.
Excluding samples that represent the delay of the equalizer ensures that
the symbol error rate calculation compares samples from the received and
transmitted signals that are meaningful and that truly correspond to each
other.

The example also plots the signal before and after equalization in a scatter
plot. The points in the equalized signal coincide with the points of the ideal
signal constellation for 4-PSK.

% Compute total number of symbol errors. Take the delay into account.
numsymerrs = symerr(fullrx(tblen+1:end),fullmodmsg(1:end-tblen))

% Plot signal before and after equalization.
h = scatterplot(fullfiltmsg); hold on;
scatterplot(fullrx,1,0,'r*',h);
legend('Filtered signal before equalization','Equalized signal',...

'Location','NorthOutside');
hold off;

The output and plot are below.

11-32

Using MLSE Equalizers

numsymerrs =

0

Using a Preamble or Postamble
Some systems include a sequence of known symbols at the beginning or end
of a set of data. The known sequence at the beginning or end is called a
preamble or postamble, respectively. The mlseeq function can accommodate a
preamble and postamble that are already incorporated into its input signal.
When you invoke the function, you specify the preamble and postamble as
integer vectors that represent the sequence of known symbols by indexing into
the signal constellation vector. For example, a preamble vector of [1 4 4]
and a 4-PSK signal constellation of [1 j -1 -j] indicate that the modulated
signal begins with [1 -j -j].

If your system uses a preamble without a postamble, then use a postamble
vector of [] when invoking mlseeq. Similarly, if your system uses a postamble
without a preamble, then use a preamble vector of [].

11-33

11 Equalizers

Example: Using a Preamble
The example below illustrates how to accommodate a preamble when using
mlseeq. Notice that the same preamble symbols appear at the beginning of
the message vector and in the syntax for mlseeq. If you wanted to use a
postamble, then you could append it to the message vector and also include
it as the last input argument for mlseeq. In this example, however, the
postamble input in the mlseeq syntax is an empty vector because the system
uses no postamble.

M = 4; % Use 4-PSK modulation.
const = pskmod(0:3,4); % PSK constellation
tblen = 16; % Traceback depth for equalizer

preamble = [3; 1]; % Expected preamble, as integers
msgIdx = randint(98,1,M); % Random symbols
msgIdx = [preamble; msgIdx]; % Include preamble at the beginning.
msg = pskmod(msgIdx,M); % Modulated message
chcoeffs = [.623; .489+.234i; .398i; .21]; % Channel coefficients
chanest = chcoeffs; % Channel estimate
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
d = mlseeq(filtmsg,chanest,const,tblen,'rst',1,preamble,[]);

[nsymerrs ser] = symerr(msg,d) % Symbol error rate

The output is below.

nsymerrs =

0

ser =

0

11-34

Selected Bibliography for Equalizers

Selected Bibliography for Equalizers
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River,
N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York,
Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

[5] Steele, Raymond, Ed., Mobile Radio Communications, Chichester,
England, Wiley, 1996.

11-35

11 Equalizers

11-36

12

Galois Field Computations

A Galois field is an algebraic field that has a finite number of members.
Galois fields having 2m members are used in error-control coding and are
denoted GF(2m). This chapter describes how to work with fields that have
2m members, where m is an integer between 1 and 16. The sections in this
chapter are as follows.

“Galois Field Terminology” (p. 12-3) Definitions of terms as used in this
chapter

“Representing Elements of Galois
Fields” (p. 12-4)

Creating a MATLAB array
containing elements of a Galois field

“Arithmetic in Galois Fields” (p.
12-13)

Doing arithmetic with arrays of
Galois field elements

“Logical Operations in Galois Fields”
(p. 12-19)

Testing for equality or for nonzero
values

“Matrix Manipulation in Galois
Fields” (p. 12-21)

Working with arrays of Galois field
elements

“Linear Algebra in Galois Fields” (p.
12-23)

Solving linear equations, inverting
arrays, and performing other linear
algebraic computations

“Signal Processing Operations in
Galois Fields” (p. 12-27)

Filtering, convolution, and discrete
Fourier transforms

“Polynomials over Galois Fields” (p.
12-30)

Representing and performing
computations with polynomials

“Manipulating Galois Variables” (p.
12-35)

Working with variables that
represent Galois field elements

12 Galois Field Computations

“Speed and Nondefault Primitive
Polynomials” (p. 12-38)

Accelerating computations involving
Galois field elements expressed
relative to a nondefault primitive
polynomial

“Selected Bibliography for Galois
Fields” (p. 12-40)

Works containing background
information about Galois fields or
their use in error-control coding

If you need to use Galois fields having an odd number of elements, see
“Galois Fields of Odd Characteristic” in the online documentation for the
Communications Toolbox.

For more details about specific functions that process arrays of Galois field
elements, see the online reference entries in the documentation for MATLAB
or for the Communications Toolbox. MATLAB functions whose generalization
to Galois fields is straightforward to describe do not have reference entries in
this manual because the entries would be identical to those in the MATLAB
manual.

12-2

Galois Field Terminology

Galois Field Terminology
The discussion of Galois fields in this document uses a few terms that are
not used consistently in the literature. The definitions adopted here appear
in van Lint [4]:

• A primitive element of GF(2m) is a cyclic generator of the group of nonzero
elements of GF(2m). This means that every nonzero element of the field can
be expressed as the primitive element raised to some integer power.

• A primitive polynomial for GF(2m) is the minimal polynomial of some
primitive element of GF(2m). That is, it is the binary-coefficient polynomial
of smallest nonzero degree having a certain primitive element as a root in
GF(2m). As a consequence, a primitive polynomial has degree m and is
irreducible.

The definitions imply that a primitive element is a root of a corresponding
primitive polynomial.

12-3

12 Galois Field Computations

Representing Elements of Galois Fields
This section describes how to create a Galois array, which is a MATLAB
expression that represents elements of a Galois field. This section also
describes how MATLAB interprets the numbers that you use in the
representation, and includes several examples. The topics are

• “Creating a Galois Array” on page 12-4

• “Example: Creating Galois Field Variables” on page 12-5

• “Example: Representing Elements of GF(8)” on page 12-6

• “How Integers Correspond to Galois Field Elements” on page 12-7

• “Example: Representing a Primitive Element” on page 12-8

• “Primitive Polynomials and Element Representations” on page 12-8

Creating a Galois Array
To begin working with data from a Galois field GF(2^m), you must set the
context by associating the data with crucial information about the field. The
gf function performs this association and creates a Galois array in MATLAB.
This function accepts as inputs

• The Galois field data, x, which is a MATLAB array whose elements are
integers between 0 and 2^m-1.

• (Optional) An integer, m, that indicates that x is in the field GF(2^m). Valid
values of m are between 1 and 16. The default is 1, which means that the
field is GF(2).

• (Optional) A positive integer that indicates which primitive polynomial for
GF(2^m) you are using in the representations in x. If you omit this input
argument, then gf uses a default primitive polynomial for GF(2^m). For
information about this argument, see “Specifying the Primitive Polynomial”
on page 12-9.

The output of the gf function is a variable that MATLAB recognizes as a
Galois field array, rather than an array of integers. As a result, when you
manipulate the variable, MATLAB works within the Galois field you have
specified. For example, if you apply the log function to a Galois array, then

12-4

Representing Elements of Galois Fields

MATLAB computes the logarithm in the Galois field and not in the field
of real or complex numbers.

When MATLAB Implicitly Creates a Galois Array
Some operations on Galois arrays require multiple arguments. If you specify
one argument that is a Galois array and another that is an ordinary MATLAB
array, then MATLAB interprets both as Galois arrays in the same field. That
is, it implicitly invokes the gf function on the ordinary MATLAB array.
This implicit invocation simplifies your syntax because you can omit some
references to the gf function. For an example of the simplification, see
“Example: Addition and Subtraction” on page 12-14.

Example: Creating Galois Field Variables
The code below creates a row vector whose entries are in the field GF(4), and
then adds the row to itself.

x = 0:3; % A row vector containing integers
m = 2; % Work in the field GF(2^2), or, GF(4).
a = gf(x,m) % Create a Galois array in GF(2^m).

b = a + a % Add a to itself, creating b.

The output is

a = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 1 2 3

b = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0 0 0

The output shows the values of the Galois arrays named a and b. Notice
that each output section indicates

12-5

12 Galois Field Computations

• The field containing the variable, namely, GF(2^2) = GF(4).

• The primitive polynomial for the field. In this case, it is the toolbox’s
default primitive polynomial for GF(4).

• The array of Galois field values that the variable contains. In particular,
the array elements in a are exactly the elements of the vector x, while the
array elements in b are four instances of the zero element in GF(4).

The command that creates b shows how, having defined the variable a as
a Galois array, you can add a to itself by using the ordinary + operator.
MATLAB performs the vectorized addition operation in the field GF(4).
Notice from the output that

• Compared to a, b is in the same field and uses the same primitive
polynomial. It is not necessary to indicate the field when defining the sum,
b, because MATLAB remembers that information from the definition of
the addends, a.

• The array elements of b are zeros because the sum of any value with itself,
in a Galois field of characteristic two, is zero. This result differs from the
sum x + x, which represents an addition operation in the infinite field
of integers.

Example: Representing Elements of GF(8)
To illustrate what the array elements in a Galois array mean, the table below
lists the elements of the field GF(8) as integers and as polynomials in a
primitive element, A. The table should help you interpret a Galois array like

gf8 = gf([0:7],3); % Galois vector in GF(2^3)

Integer
Representation

Binary
Representation

Element of GF(8)

0 000 0

1 001 1

2 010 A

3 011 A + 1

12-6

Representing Elements of Galois Fields

Integer
Representation

Binary
Representation

Element of GF(8)

4 100 A2

5 101 A2 + 1

6 110 A2 + A

7 111 A2 + A + 1

How Integers Correspond to Galois Field Elements
Building on the GF(8) example above, this section explains the interpretation
of array elements in a Galois array in greater generality. The field GF(2^m)
has 2^m distinct elements, which this toolbox labels as 0, 1, 2,..., 2^m-1. These
integer labels correspond to elements of the Galois field via a polynomial
expression involving a primitive element of the field. More specifically, each
integer between 0 and 2^m-1 has a binary representation in m bits. Using the
bits in the binary representation as coefficients in a polynomial, where the
least significant bit is the constant term, leads to a binary polynomial whose
order is at most m-1. Evaluating the binary polynomial at a primitive element
of GF(2^m) leads to an element of the field.

Conversely, any element of GF(2^m) can be expressed as a binary polynomial
of order at most m-1, evaluated at a primitive element of the field. The m-tuple
of coefficients of the polynomial corresponds to the binary representation of
an integer between 0 and 2^m.

Below is a symbolic illustration of the correspondence of an integer X,
representable in binary form, with a Galois field element. Each bk is either
zero or one, while A is a primitive element.

X b b b b

b A b A b A b

m
m

m
m

= ⋅ + + ⋅ + ⋅ +

↔ ⋅ + + ⋅ + ⋅ +
−

−

−
−

1
1

2 1 0

1
1

2
2

1 0

2 4 2L

L

12-7

12 Galois Field Computations

Example: Representing a Primitive Element
The code below defines a variable alph that represents a primitive element of
the field GF(24).

m = 4; % Or choose any positive integer value of m.
alph = gf(2,m) % Primitive element in GF(2^m)

The output is

alph = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

2

The Galois array alph represents a primitive element because of the
correspondence between

• The integer 2, specified in the gf syntax

• The binary representation of 2, which is 10 (or 0010 using four bits)

• The polynomial A + 0, where A is a primitive element in this field (or 0A3 +
0A2 + A + 0 using the four lowest powers of A)

Primitive Polynomials and Element Representations
This section builds on the discussion in “Creating a Galois Array” on page
12-4 by describing how to specify your own primitive polynomial when you
create a Galois array. The topics are

• “Specifying the Primitive Polynomial” on page 12-9

• “Finding Primitive Polynomials” on page 12-10

• “Effect of Nondefault Primitive Polynomials on Numerical Results” on
page 12-11

If you perform many computations using a nondefault primitive polynomial,
then see “Speed and Nondefault Primitive Polynomials” on page 12-38 as well.

12-8

Representing Elements of Galois Fields

Specifying the Primitive Polynomial
The discussion in “How Integers Correspond to Galois Field Elements”
on page 12-7 refers to a primitive element, which is a root of a primitive
polynomial of the field. When you use the gf function to create a Galois array,
the function interprets the integers in the array with respect to a specific
default primitive polynomial for that field, unless you explicitly provide a
different primitive polynomial. A list of the default primitive polynomials is
on the reference page for the gf function.

To specify your own primitive polynomial when creating a Galois array, use a
syntax like

c = gf(5,4,25) % 25 indicates the primitive polynomial for GF(16).

instead of

c1= gf(5,4); % Use default primitive polynomial for GF(16).

The extra input argument, 25 in this case, specifies the primitive polynomial
for the field GF(2^m) in a way similar to the representation described in “How
Integers Correspond to Galois Field Elements” on page 12-7. In this case, the
integer 25 corresponds to a binary representation of 11001, which in turn
corresponds to the polynomial D4 + D3 + 1.

Note When you specify the primitive polynomial, the input argument
must have a binary representation using exactly m+1 bits, not including
unnecessary leading zeros. In other words, a primitive polynomial for GF(2^m)
always has order m.

When you use an input argument to specify the primitive polynomial, the
output reflects your choice by showing the integer value as well as the
polynomial representation.

d = gf([1 2 3],4,25)

12-9

12 Galois Field Computations

d = GF(2^4) array. Primitive polynomial = D^4+D^3+1 (25 decimal)

Array elements =

1 2 3

Note After you have defined a Galois array, you cannot change the primitive
polynomial with respect to which MATLAB interprets the array elements.

Finding Primitive Polynomials
You can use the primpoly function to find primitive polynomials for GF(2^m)
and the isprimitive function to determine whether a polynomial is primitive
for GF(2^m). The code below illustrates.

m = 4;
defaultprimpoly = primpoly(m) % Default primitive poly for GF(16)
allprimpolys = primpoly(m,'all') % All primitive polys for GF(16)
i1 = isprimitive(25) % Can 25 be the prim_poly input in gf(...)?
i2 = isprimitive(21) % Can 21 be the prim_poly input in gf(...)?

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

defaultprimpoly =

19

Primitive polynomial(s) =

D^4+D^1+1
D^4+D^3+1

12-10

Representing Elements of Galois Fields

allprimpolys =

19
25

i1 =

1

i2 =

0

Effect of Nondefault Primitive Polynomials on Numerical
Results
Most fields offer multiple choices for the primitive polynomial that helps
define the representation of members of the field. When you use the gf
function, changing the primitive polynomial changes the interpretation of
the array elements and, in turn, changes the results of some subsequent
operations on the Galois array. For example, exponentiation of a primitive
element makes it easy to see how the primitive polynomial affects the
representations of field elements.

a11 = gf(2,3); % Use default primitive polynomial of 11.
a13 = gf(2,3,13); % Use D^3+D^2+1 as the primitive polynomial.
z = a13.^3 + a13.^2 + 1 % 0 because a13 satisfies the equation
nz = a11.^3 + a11.^2 + 1 % Nonzero. a11 does not satisfy equation.

The output below shows that when the primitive polynomial has integer
representation 13, the Galois array satisfies a certain equation. By contrast,
when the primitive polynomial has integer representation 11, the Galois
array fails to satisfy the equation.

z = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

0

12-11

12 Galois Field Computations

nz = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

6

The output when you try this example might also include a warning about
lookup tables. This is normal if you did not use the gftable function to
optimize computations involving a nondefault primitive polynomial of 13.

12-12

Arithmetic in Galois Fields

Arithmetic in Galois Fields
You can perform arithmetic operations on Galois arrays by using familiar
MATLAB operators, listed in the table below. Whenever you operate on a pair
of Galois arrays, both arrays must be in the same Galois field.

Operation Operator

Addition +

Subtraction -

Elementwise multiplication .*

Matrix multiplication *

Elementwise left division ./

Elementwise right division .\

Matrix left division /

Matrix right division \

Elementwise exponentiation .^

Elementwise logarithm log()

Exponentiation of a square Galois
matrix by a scalar integer

^

Note For multiplication and division of polynomials over a Galois field, see
“Addition and Subtraction of Polynomials” on page 12-30.

Examples of these operations are in the sections that follow:

• “Example: Addition and Subtraction” on page 12-14

• “Example: Multiplication” on page 12-15

• “Example: Division” on page 12-16

• “Example: Exponentiation” on page 12-17

12-13

12 Galois Field Computations

• “Example: Elementwise Logarithm” on page 12-18

Example: Addition and Subtraction
The code below adds two Galois arrays to create an addition table for GF(8).
Addition uses the ordinary + operator. The code below also shows how to index
into the array addtb to find the result of adding 1 to the elements of GF(8).

m = 3;
e = repmat([0:2^m-1],2^m,1);
f = gf(e,m); % Create a Galois array.
addtb = f + f' % Add f to its own matrix transpose.

addone = addtb(2,:); % Assign 2nd row to the Galois vector addone.

The output is below.

addtb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

As an example of reading this addition table, the (7,4) entry in the addtb
array shows that gf(6,3) plus gf(3,3) equals gf(5,3). Equivalently, the
element A2+A plus the element A+1 equals the element A2+1. The equivalence
arises from the binary representation of 6 as 110, 3 as 011, and 5 as 101.

The subtraction table, which you can obtain by replacing + by -, would be
the same as addtb. This is because subtraction and addition are identical
operations in a field of characteristic two. In fact, the zeros along the main
diagonal of addtb illustrate this fact for GF(8).

12-14

Arithmetic in Galois Fields

Simplifying the Syntax
The code below illustrates scalar expansion and the implicit creation of a
Galois array from an ordinary MATLAB array. The Galois arrays h and h1 are
identical, but the creation of h uses a simpler syntax.

g = gf(ones(2,3),4); % Create a Galois array explicitly.
h = g + 5; % Add gf(5,4) to each element of g.
h1 = g + gf(5*ones(2,3),4) % Same as h.

The output is below.

h1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

4 4 4
4 4 4

Notice that 1+5 is reported as 4 in the Galois field. This is true because the
5 represents the polynomial expression A2+1, and 1+(A2+1) in GF(16) is A2.
Furthermore, the integer that represents the polynomial expression A2 is 4.

Example: Multiplication
The example below multiplies individual elements in a Galois array using
the .* operator. It then performs matrix multiplication using the * operator.
The elementwise multiplication produces an array whose size matches that of
the inputs. By contrast, the matrix multiplication produces a Galois scalar
because it is the matrix product of a row vector with a column vector.

m = 5;
row1 = gf([1:2:9],m); row2 = gf([2:2:10],m);
col = row2'; % Transpose to create a column array.
ep = row1 .* row2; % Elementwise product.
mp = row1 * col; % Matrix product.

Multiplication Table for GF(8)
As another example, the code below multiplies two Galois vectors using
matrix multiplication. The result is a multiplication table for GF(8).

12-15

12 Galois Field Computations

m = 3;
els = gf([0:2^m-1]',m);
multb = els * els' % Multiply els by its own matrix transpose.

The output is below.

multb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 3 1 7 5
0 3 6 5 7 4 1 2
0 4 3 7 6 2 5 1
0 5 1 4 2 7 3 6
0 6 7 1 5 3 2 4
0 7 5 2 1 6 4 3

Example: Division
The examples below illustrate the four division operators in a Galois field by
computing multiplicative inverses of individual elements and of an array. You
can also compute inverses using inv or using exponentiation by -1.

Elementwise Division
This example divides 1 by each of the individual elements in a Galois array
using the ./ and .\ operators. These two operators differ only in their
sequence of input arguments. Each quotient vector lists the multiplicative
inverses of the nonzero elements of the field. In this example, MATLAB
expands the scalar 1 to the size of nz before computing; alternatively, you can
use as arguments two arrays of the same size.

m = 5;
nz = gf([1:2^m-1],m); % Nonzero elements of the field
inv1 = 1 ./ nz; % Divide 1 by each element.
inv2 = nz .\ 1; % Obtain same result using .\ operator.

12-16

Arithmetic in Galois Fields

Matrix Division
This example divides the identity array by the square Galois array mat
using the / and \ operators. Each quotient matrix is the multiplicative
inverse of mat. Notice how the transpose operator (') appears in the equivalent
operation using \. For square matrices, the sequence of transpose operations
is unnecessary, but for nonsquare matrices, it is necessary.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minv1 = eye(3) / mat; % Compute matrix inverse.
minv2 = (mat' \ eye(3)')'; % Obtain same result using \ operator.

Example: Exponentiation
The examples below illustrate how to compute integer powers of a Galois
array. To perform matrix exponentiation on a Galois array, you must use a
square Galois array as the base and an ordinary (not Galois) integer scalar
as the exponent.

Elementwise Exponentiation
This example computes powers of a primitive element, A, of a Galois field. It
then uses these separately computed powers to evaluate the default primitive
polynomial at A. The answer of zero shows that A is a root of the primitive
polynomial. Notice that the .^ operator exponentiates each array element
independently.

m = 3;
av = gf(2*ones(1,m+1),m); % Row containing primitive element
expa = av .^ [0:m]; % Raise element to different powers.
evp = expa(4)+expa(2)+expa(1) % Evaluate D^3 + D + 1.

The output is below.

evp = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

0

12-17

12 Galois Field Computations

Matrix Exponentiation
This example computes the inverse of a square matrix by raising the matrix
to the power -1. It also raises the square matrix to the powers 2 and -2.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minvs = mat ^ (-1); % Matrix inverse
matsq = mat^2; % Same as mat * mat
matinvssq = mat^(-2); % Same as minvs * minvs

Example: Elementwise Logarithm
The code below computes the logarithm of the elements of a Galois array. The
output indicates how to express each nonzero element of GF(8) as a power
of the primitive element. The logarithm of the zero element of the field is
undefined.

gf8_nonzero = gf([1:7],3); % Vector of nonzero elements of GF(8)
expformat = log(gf8_nonzero) % Logarithm of each element

The output is

expformat =

0 1 3 2 6 4 5

As an example of how to interpret the output, consider the last entry in each
vector in this example. You can infer that the element gf(7,3) in GF(8)
can be expressed as either

• A5, using the last element of expformat

• A2+A+1, using the binary representation of 7 as 111. See “Example:
Representing Elements of GF(8)” on page 12-6 for more details.

12-18

Logical Operations in Galois Fields

Logical Operations in Galois Fields
You can apply logical tests to Galois arrays and obtain a logical array. Some
important types of tests are testing for equality of two Galois arrays and
testing for nonzero values in a Galois array.

Testing for Equality
To compare corresponding elements of two Galois arrays that have the same
size, use the operators == and ~=. The result is a logical array, each element
of which indicates the truth or falsity of the corresponding elementwise
comparison. If you use the same operators to compare a scalar with a Galois
array, then MATLAB compares the scalar with each element of the array,
producing a logical array of the same size.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg1 = (r1 .* r2 == [1 1 1]) % Does each element equal one?
lg2 = (r1 .* r2 == 1) % Same as above, using scalar expansion
lg3 = (r1 ~= r2) % Does each element differ from its inverse?

The output is below.

lg1 =

1 1 1

lg2 =

1 1 1

lg3 =

0 1 1

Comparison of isequal and ==
To compare entire arrays and obtain a logical scalar result rather than a
logical array, you can use the built-in isequal function. Note, however, that

12-19

12 Galois Field Computations

isequal uses strict rules for its comparison, and returns a value of 0 (false)
if you compare

• A Galois array with an ordinary MATLAB array, even if the values of the
underlying array elements match

• A scalar with a nonscalar array, even if all elements in the array match the
scalar

The example below illustrates this difference between == and isequal.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg4 = isequal(r1 .* r2, [1 1 1]); % False
lg5 = isequal(r1 .* r2, gf(1,m)); % False
lg6 = isequal(r1 .* r2, gf([1 1 1],m)); % True

Testing for Nonzero Values
To test for nonzero values in a Galois vector, or in the columns of a Galois
array that has more than one row, use the any or all function. These two
functions behave just like the ordinary MATLAB functions any and all,
except that they consider only the underlying array elements while ignoring
information about which Galois field the elements are in. Examples are below.

m = 3; randels = gf(randint(6,1,2^m),m);
if all(randels) % If all elements are invertible

invels = randels .\ 1; % Compute inverses of elements.
else

disp('At least one element was not invertible.');
end
alph = gf(2,4);
poly = 1 + alph + alph^3;
if any(poly) % If poly contains a nonzero value

disp('alph is not a root of 1 + D + D^3.');
end
code = rsenc(gf([0:4;3:7],3),7,5); % Each row is a codeword.
if all(code,2) % Is each row entirely nonzero?

disp('Both codewords are entirely nonzero.');
else

disp('At least one codeword contains a zero.');
end

12-20

Matrix Manipulation in Galois Fields

Matrix Manipulation in Galois Fields
Some basic operations that you would perform on an ordinary MATLAB array
are available for Galois arrays. This section illustrates how to perform basic
manipulations and how to get basic information.

Basic Manipulations of Galois Arrays
Basic array operations on Galois arrays are in the table below. The
functionality of these operations is analogous to the MATLAB operations
having the same syntax.

Operation Syntax

Index into array, possibly using
colon operator instead of a vector of
explicit indices

a(vector) or a(vector,vector1),
where vector and/or vector1 can be
":" instead of a vector

Transpose array a'

Concatenate matrices [a,b] or [a;b]

Create array having specified
diagonal elements

diag(vector) or diag(vector,k)

Extract diagonal elements diag(a) or diag(a,k)

Extract lower triangular part tril(a) or tril(a,k)

Extract upper triangular part triu(a) or triu(a,k)

Change shape of array reshape(a,k1,k2)

The code below uses some of these syntaxes.

m = 4; a = gf([0:15],m);
a(1:2) = [13 13]; % Replace some elements of the vector a.
b = reshape(a,2,8); % Create 2-by-8 matrix.
c = [b([1 1 2],1:3); a(4:6)]; % Create 4-by-3 matrix.
d = [c, a(1:4)']; % Create 4-by-4 matrix.
dvec = diag(d); % Extract main diagonal of d.
dmat = diag(a(5:9)); % Create 5-by-5 diagonal matrix
dtril = tril(d); % Extract upper and lower triangular

12-21

12 Galois Field Computations

dtriu = triu(d); % parts of d.

Basic Information About Galois Arrays
You can determine the length of a Galois vector or the size of any Galois array
using the length and size functions. The functionality for Galois arrays is
analogous to that of the MATLAB operations on ordinary arrays, except that
the output arguments from size and length are always integers, not Galois
arrays. The code below illustrates the use of these functions.

m = 4; e = gf([0:5],m); f = reshape(e,2,3);
lne = length(e); % Vector length of e
szf = size(f); % Size of f, returned as a two-element row
[nr,nc] = size(f); % Size of f, returned as two scalars
nc2 = size(f,2); % Another way to compute number of columns

Positions of Nonzero Elements
Another type of information you might want to determine from a Galois array
is the positions of nonzero elements. For an ordinary MATLAB array, you
might use the find function. However, for a Galois array you should use find
in conjunction with the ~= operator, as illustrated.

x = [0 1 2 1 0 2]; m = 2; g = gf(x,m);
nzx = find(x); % Find nonzero values in the ordinary array x.
nzg = find(g~=0); % Find nonzero values in the Galois array g.

12-22

Linear Algebra in Galois Fields

Linear Algebra in Galois Fields
You can do linear algebra in a Galois field using Galois arrays. Important
categories of computations are inverting matrices, computing determinants,
computing ranks, factoring square matrices, and solving linear equations.

Inverting Matrices and Computing Determinants
To invert a square Galois array, use the inv function. Related is the det
function, which computes the determinant of a Galois array. Both inv and det
behave like their ordinary MATLAB counterparts, except that they perform
computations in the Galois field instead of in the field of complex numbers.

Note A Galois array is singular if and only if its determinant is exactly
zero. It is not necessary to consider roundoff errors, as in the case of real
and complex arrays.

The code below illustrates matrix inversion and determinant computation.

m = 4;
randommatrix = gf(randint(4,4,2^m),m);
gfid = gf(eye(4),m);
if det(randommatrix) ~= 0

invmatrix = inv(randommatrix);
check1 = invmatrix * randommatrix;
check2 = randommatrix * invmatrix;
if (isequal(check1,gfid) & isequal(check2,gfid))

disp('inv found the correct matrix inverse.');
end

else
disp('The matrix is not invertible.');

end

The output from this example is either of these two messages, depending on
whether the randomly generated matrix is nonsingular or singular.

inv found the correct matrix inverse.
The matrix is not invertible.

12-23

12 Galois Field Computations

Computing Ranks
To compute the rank of a Galois array, use the rank function. It behaves like
the ordinary MATLAB rank function when given exactly one input argument.
The example below illustrates how to find the rank of square and nonsquare
Galois arrays.

m = 3;
asquare = gf([4 7 6; 4 6 5; 0 6 1],m);
r1 = rank(asquare);
anonsquare = gf([4 7 6 3; 4 6 5 1; 0 6 1 1],m);
r2 = rank(anonsquare);
[r1 r2]

The output is

ans =

2 3

The values of r1 and r2 indicate that asquare has less than full rank but that
anonsquare has full rank.

Factoring Square Matrices
To express a square Galois array (or a permutation of it) as the product of a
lower triangular Galois array and an upper triangular Galois array, use the
lu function. This function accepts one input argument and produces exactly
two or three output arguments. It behaves like the ordinary MATLAB lu
function when given the same syntax. The example below illustrates how to
factor using lu.

tofactor = gf([6 5 7 6; 5 6 2 5; 0 1 7 7; 1 0 5 1],3);
[L,U]=lu(tofactor); % lu with two output arguments
c1 = isequal(L*U, tofactor) % True
tofactor2 = gf([1 2 3 4;1 2 3 0;2 5 2 1; 0 5 0 0],3);
[L2,U2,P] = lu(tofactor2); % lu with three output arguments
c2 = isequal(L2*U2, P*tofactor2) % True

12-24

Linear Algebra in Galois Fields

Solving Linear Equations
To find a particular solution of a linear equation in a Galois field, use the \
or / operator on Galois arrays. The table below indicates the equation that
each operator addresses, assuming that A and B are previously defined Galois
arrays.

Operator Linear
Equation

Syntax Equivalent Syntax
Using \

Backslash (\) A * x = B x = A \ B Not applicable

Slash (/) x * A = B x = B / A x = (A'\B')'

The results of the syntax in the table depend on characteristics of the Galois
array A:

• If A is square and nonsingular, then the output x is the unique solution to
the linear equation.

• If A is square and singular, then the syntax in the table produces an error.

• If A is not square, then MATLAB attempts to find a particular solution. If
A'*A or A*A' is a singular array, or if A is a tall matrix that represents an
overdetermined system, then the attempt might fail.

Note An error message does not necessarily indicate that the linear equation
has no solution. You might be able to find a solution by rephrasing the
problem. For example, gf([1 2; 0 0],3) \ gf([1; 0],3) produces an error
but the mathematically equivalent gf([1 2],3) \ gf([1],3) does not. The
first syntax fails because gf([1 2; 0 0],3) is a singular square matrix.

Example: Solving Linear Equations
The examples below illustrate how to find particular solutions of linear
equations over a Galois field.

m = 4;
A = gf(magic(3),m); % Square nonsingular matrix
Awide=[A, 2*A(:,3)]; % 3-by-4 matrix with redundancy on the right
Atall = Awide'; % 4-by-3 matrix with redundancy at the bottom

12-25

12 Galois Field Computations

B = gf([0:2]',m);
C = [B; 2*B(3)];
D = [B; B(3)+1];
thesolution = A \ B; % Solution of A * x = B
thesolution2 = B' / A; % Solution of x * A = B'
ck1 = all(A * thesolution == B) % Check validity of solutions.
ck2 = all(thesolution2 * A == B')
% Awide * x = B has infinitely many solutions. Find one.
onesolution = Awide \ B;
ck3 = all(Awide * onesolution == B) % Check validity of solution.
% Atall * x = C has a solution.
asolution = Atall \ C;
ck4 = all(Atall * asolution == C) % Check validity of solution.
% Atall * x = D has no solution.
notasolution = Atall \ D;
ck5 = all(Atall * notasolution == D) % It is not a valid solution.

The output from this example indicates that the validity checks are all true
(1), except for ck5, which is false (0).

12-26

Signal Processing Operations in Galois Fields

Signal Processing Operations in Galois Fields
You can perform some signal-processing operations on Galois arrays, such
as filtering, convolution, and the discrete Fourier transform. This section
describes how to perform these operations. Other information about the
corresponding operations for ordinary real vectors is in the Signal Processing
Toolbox documentation.

Filtering
To filter a Galois vector, use the filter function. It behaves like the ordinary
MATLAB filter function when given exactly three input arguments.

The code and diagram below give the impulse response of a particular filter
over GF(2).

m = 1; % Work in GF(2).
b = gf([1 0 0 1 0 1 0 1],m); % Numerator
a = gf([1 0 1 1],m); % Denominator
x = gf([1,zeros(1,19)],m);
y = filter(b,a,x); % Filter x.
figure; stem(y.x); % Create stem plot.
axis([0 20 -.1 1.1])

12-27

12 Galois Field Computations

Convolution
This toolbox offers two equivalent ways to convolve a pair of Galois vectors:

• Use the conv function, as described in “Multiplication and Division of
Polynomials” on page 12-30. This works because convolving two vectors
is equivalent to multiplying the two polynomials whose coefficients are
the entries of the vectors.

• Use the convmtx function to compute the convolution matrix of one of the
vectors, and then multiply that matrix by the other vector. This works
because convolving two vectors is equivalent to filtering one of the vectors
by the other. The equivalence permits the representation of a digital filter
as a convolution matrix, which you can then multiply by any Galois vector
of appropriate length.

Tip If you need to convolve large Galois vectors, then multiplying by the
convolution matrix might be faster than using conv.

Example
The example below computes the convolution matrix for a vector b in GF(4),
representing the numerator coefficients for a digital filter. It then illustrates
the two equivalent ways to convolve b with x over the Galois field.

m = 2; b = gf([1 2 3]',m);
n = 3; x = gf(randint(n,1,2^m),m);
C = convmtx(b,n); % Compute convolution matrix.
v1 = conv(b,x); % Use conv to convolve b with x
v2 = C*x; % Use C to convolve b with x.

Discrete Fourier Transform
The discrete Fourier transform is an important tool in digital signal
processing. This toolbox offers these tools to help you process discrete Fourier
transforms:

• fft, which transforms a Galois vector

• ifft, which inverts the discrete Fourier transform on a Galois vector

12-28

Signal Processing Operations in Galois Fields

• dftmtx, which returns a Galois array that you can use to perform or invert
the discrete Fourier transform on a Galois vector

In all cases, the vector being transformed must be a Galois vector of length
2m-1 in the field GF(2m). The examples below illustrate the use of these
functions. You can check, using the isequal function, that y equals y1, z
equals z1, and z equals x.

m = 4;
x = gf(randint(2^m-1,1,2^m),m); % A vector to transform
alph = gf(2,m);
dm = dftmtx(alph);
idm = dftmtx(1/alph);
y = dm*x; % Transform x using the result of dftmtx.
y1 = fft(x); % Transform x using fft.
z = idm*y; % Recover x using the result of dftmtx(1/alph).
z1 = ifft(y1); % Recover x using ifft.

Tip If you have many vectors that you want to transform (in the same field),
then it might be faster to use dftmtx once and matrix multiplication many
times, instead of using fft many times.

12-29

12 Galois Field Computations

Polynomials over Galois Fields
You can use Galois vectors to represent polynomials in an indeterminate
quantity x, with coefficients in a Galois field. Form the representation by
listing the coefficients of the polynomial in a vector in order of descending
powers of x. For example, the vector

gf([2 1 0 3],4)

represents the polynomial Ax3 + 1x2 + 0x + (A+1), where

• A is a primitive element in the field GF(24).

• x is the indeterminate quantity in the polynomial.

You can then use such a Galois vector to perform arithmetic with, evaluate,
and find roots of polynomials. You can also find minimal polynomials of
elements of a Galois field.

Addition and Subtraction of Polynomials
To add and subtract polynomials, use + and - on equal-length Galois vectors
that represent the polynomials. If one polynomial has lower degree than the
other, then you must pad the shorter vector with zeros at the beginning so
that the two vectors have the same length. The example below shows how
to add a degree-one and a degree-two polynomial.

lin = gf([4 2],3); % A^2 x + A, which is linear in x
linpadded = gf([0 4 2],3); % The same polynomial, zero-padded
quadr = gf([1 4 2],3); % x^2 + A^2 x + A, which is quadratic in x
% Can't do lin + quadr because they have different vector lengths.
sumpoly = [0, lin] + quadr; % Sum of the two polynomials
sumpoly2 = linpadded + quadr; % The same sum

Multiplication and Division of Polynomials
To multiply and divide polynomials, use conv and deconv on Galois vectors
that represent the polynomials. Multiplication and division of polynomials
is equivalent to convolution and deconvolution of vectors. The deconv
function returns the quotient of the two polynomials as well as the remainder
polynomial. Examples are below.

12-30

Polynomials over Galois Fields

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
bpoly = gf([1 1],m); % x + 1
xpoly = gf([1 0],m); % x
% Product is A^2 x^3 + x^2 + (A^2 + A) x + (A + 1).
cpoly = conv(apoly,bpoly);
[a2,remd] = deconv(cpoly,bpoly); % a2==apoly. remd is zero.
[otherpol,remd2] = deconv(cpoly,xpoly); % remd is nonzero.

The multiplication and division operators in “Arithmetic in Galois Fields” on
page 12-13 multiply elements or matrices, not polynomials.

Evaluating Polynomials
To evaluate a polynomial at an element of a Galois field, use polyval. It
behaves like the ordinary MATLAB polyval function when given exactly
two input arguments. The example below evaluates a polynomial at several
elements in a field and checks the results using .^ and .* in the field.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
x0 = gf([0 1 2],m); % Points at which to evaluate the polynomial
y = polyval(apoly,x0)

a = gf(2,m); % Primitive element of the field, corresponding to A.
y2 = a.^2.*x0.^2 + (a.^2+1).*x0 + (a+1) % Check the result.

The output is below.

y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

3 2 10

y2 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

3 2 10

12-31

12 Galois Field Computations

The first element of y evaluates the polynomial at 0 and, therefore, returns
the polynomial’s constant term of 3.

Roots of Polynomials
To find the roots of a polynomial in a Galois field, use the roots function on
a Galois vector that represents the polynomial. This function finds roots
that are in the same field that the Galois vector is in. The number of times
an entry appears in the output vector from roots is exactly its multiplicity
as a root of the polynomial.

Note If the Galois vector is in GF(2m), then the polynomial it represents
might have additional roots in some extension field GF((2m)k). However, roots
does not find those additional roots or indicate their existence.

The examples below find roots of cubic polynomials in GF(8).

m = 3;
cubicpoly1 = gf([2 7 3 0],m); % A polynomial divisible by x
cubicpoly2 = gf([2 7 3 1],m);
cubicpoly3 = gf([2 7 3 2],m);
zeroandothers = roots(cubicpoly1); % Zero is among the roots.
multipleroots = roots(cubicpoly2); % One root has multiplicity 2.
oneroot = roots(cubicpoly3); % Only one root is in GF(2^m).

Roots of Binary Polynomials
In the special case of a polynomial having binary coefficients, it is also easy to
find roots that exist in an extension field. This because the elements 0 and 1
have the same unambiguous representation in all fields of characteristic two.
To find roots of a binary polynomial in an extension field, apply the roots
function to a Galois vector in the extension field whose array elements are the
binary coefficients of the polynomial.

The example below seeks roots of a binary polynomial in various fields.

gf2poly = gf([1 1 1],1); % x^2 + x + 1 in GF(2)
noroots = roots(gf2poly); % No roots in the ground field, GF(2)

12-32

Polynomials over Galois Fields

gf4poly = gf([1 1 1],2); % x^2 + x + 1 in GF(4)
roots4 = roots(gf4poly); % The roots are A and A+1, in GF(4).
gf16poly = gf([1 1 1],4); % x^2 + x + 1 in GF(16)
roots16 = roots(gf16poly); % Roots in GF(16)
checkanswer4 = polyval(gf4poly,roots4); % Zero vector
checkanswer16 = polyval(gf16poly,roots16); % Zero vector

The roots of the polynomial do not exist in GF(2), so noroots is an empty
array. However, the roots of the polynomial exist in GF(4) as well as in
GF(16), so roots4 and roots16 are nonempty.

Notice that roots4 and roots16 are not equal to each other. They differ in
these ways:

• roots4 is a GF(4) array, while roots16 is a GF(16) array. MATLAB keeps
track of the underlying field of a Galois array.

• The array elements in roots4 and roots16 differ because they use
representations with respect to different primitive polynomials. For
example, 2 (which represents a primitive element) is an element of the
vector roots4 because the default primitive polynomial for GF(4) is the
same polynomial that gf4poly represents. On the other hand, 2 is not an
element of roots16 because the primitive element of GF(16) is not a root of
the polynomial that gf16poly represents.

Minimal Polynomials
The minimal polynomial of an element of GF(2m) is the smallest-degree
nonzero binary-coefficient polynomial having that element as a root in
GF(2m). To find the minimal polynomial of an element or a column vector of
elements, use the minpol function.

The code below finds that the minimal polynomial of gf(6,4) is D2 + D + 1
and then checks that gf(6,4) is indeed among the roots of that polynomial in
the field GF(16).

m = 4;
e = gf(6,4);
em = minpol(e) % Find minimal polynomial of e. em is in GF(2).

emr = roots(gf([0 0 1 1 1],m)) % Roots of D^2+D+1 in GF(2^m)

12-33

12 Galois Field Computations

The output is

em = GF(2) array.

Array elements =

0 0 1 1 1

emr = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

6
7

To find out which elements of a Galois field share the same minimal
polynomial, use the cosets function.

12-34

Manipulating Galois Variables

Manipulating Galois Variables
This section describes techniques for manipulating Galois variables or for
transferring information between Galois arrays and ordinary MATLAB
arrays.

Note These techniques are particularly relevant if you write M-file functions
that process Galois arrays. For an example of this type of usage, enter edit
gf/conv in the Command Window and examine the first several lines of code
in the editor window.

Determining Whether a Variable Is a Galois Array
To find out whether a variable is a Galois array rather than an ordinary
MATLAB array, use the isa function. An illustration is below.

mlvar = eye(3);
gfvar = gf(mlvar,3);
no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
yes = isa(gfvar,'gf'); % True because gfvar is a Galois array

Extracting Information from a Galois Array
To extract the array elements, field order, or primitive polynomial from a
variable that is a Galois array, append a suffix to the name of the variable.
The table below lists the exact suffixes, which are independent of the name
of the variable.

12-35

12 Galois Field Computations

Information Suffix Output Value

Array elements .x MATLAB array of type
uint16 that contains
the data values from
the Galois array

Field order .m Integer of type double
that indicates that
the Galois array is in
GF(2^m)

Primitive polynomial .prim_poly Integer of type uint32
that represents the
primitive polynomial.
The representation
is similar to the
description in “How
Integers Correspond to
Galois Field Elements”
on page 12-7.

Note If the output value is an integer data type and you want to convert it to
double for later manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr
uses a vector of binary coefficients of a polynomial to create a Galois array
in an extension field. Another part of the example retrieves the primitive
polynomial for the field and converts it to a binary vector representation
having the appropriate number of bits.

% Check that e solves its own minimal polynomial.
e = gf(6,4); % An element of GF(16)
emp = minpol(e); % The minimal polynomial, emp, is in GF(2).
empr = roots(gf(emp.x,e.m)); % Find roots of emp in GF(16).

% Check that the primitive element gf(2,m) is
% really a root of the primitive polynomial for the field.
primpoly_int = double(e.prim_poly);

12-36

Manipulating Galois Variables

mval = e.m;
primpoly_vect = gf(de2bi(primpoly_int,mval+1,'left-msb'),mval);
containstwo = roots(primpoly_vect); % Output vector includes 2.

12-37

12 Galois Field Computations

Speed and Nondefault Primitive Polynomials
The section “Specifying the Primitive Polynomial” on page 12-9 described
how you can represent elements of a Galois field with respect to a primitive
polynomial of your choice. This section describes how you can increase
the speed of computations involving a Galois array that uses a primitive
polynomial other than the default primitive polynomial. The technique is
recommended if you perform many such computations.

The mechanism for increasing the speed is a data file, userGftable.mat, that
some computational functions use to avoid performing certain computations
repeatedly. To take advantage of this mechanism for your combination of field
order (m) and primitive polynomial (prim_poly):

1 Navigate in MATLAB to a directory to which you have write permission.
You can use either the cd function or the Current Directory feature to
navigate.

2 Define m and prim_poly as workspace variables. For example:

m = 3; prim_poly = 13; % Examples of valid values

3 Invoke the gftable function:

gftable(m,prim_poly); % If you previously defined m and prim_poly

The function revises or creates userGftable.mat in your current working
directory to include data relating to your combination of field order and
primitive polynomial. After you initially invest the time to invoke gftable,
subsequent computations using those values of m and prim_poly should be
faster.

Note If you change your current working directory after invoking gftable,
then you must place userGftable.mat on your MATLAB path to ensure
that MATLAB can see it. Do this by using the addpath command to
prefix the directory containing userGftable.mat to your MATLAB path.
If you have multiple copies of userGftable.mat on your path, then use
which('userGftable.mat','-all') to find out where they are and which one
MATLAB is using.

12-38

Speed and Nondefault Primitive Polynomials

To see how much gftable improves the speed of your computations, you can
surround your computations with the tic and toc functions. See the gftable
reference page for an example.

12-39

12 Galois Field Computations

Selected Bibliography for Galois Fields
[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading,
Mass., Addison-Wesley, 1983, p. 105.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley,
1993.

[3] Lin, Shu and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

[5] Wicker, Stephen B., Error Control Systems for Digital Communication and
Storage, Upper Saddle River, N.J., Prentice Hall, 1995.

12-40

13

Galois Fields of Odd
Characteristic

A Galois field is an algebraic field having pm elements, where p is prime and m
is a positive integer. This chapter describes how to work with Galois fields in
which p is odd. To work with Galois fields having an even number of elements,
see Galois Field Computations. The sections in this chapter are as follows.

“Galois Field Terminology” (p. 13-3) Definitions of some terms related to
Galois fields

“Representing Elements of Galois
Fields” (p. 13-4)

Representing Galois field elements
using exponential and polynomial
formats

“Default Primitive Polynomials” (p.
13-8)

Determining the toolbox’s default
primitive polynomial for a Galois
field

“Converting and Simplifying
Element Formats” (p. 13-9)

Converting between the exponential
and polynomial formats, or
simplifying a given representation

“Arithmetic in Galois Fields” (p.
13-13)

Adding, subtracting, multiplying,
and dividing elements of Galois
fields

“Polynomials over Prime Fields” (p.
13-16)

Finding roots of or manipulating
polynomials over a prime Galois
field; finding primitive polynomials

13 Galois Fields of Odd Characteristic

“Other Galois Field Functions” (p.
13-21)

Other functions that are related to
Galois fields

“Selected Bibliography for Galois
Fields” (p. 13-22)

Works containing background
information about Galois fields

13-2

Galois Field Terminology

Galois Field Terminology
Throughout this section, p is an odd prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the
literature. The definitions adopted here appear in van Lint [4].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero
elements of GF(pm). This means that every nonzero element of the field
can be expressed as the primitive element raised to some integer power.
Primitive elements are called A throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some
primitive element of GF(pm). As a consequence, it has degree m and is
irreducible.

13-3

13 Galois Fields of Odd Characteristic

Representing Elements of Galois Fields
This section discusses how to represent Galois field elements using this
toolbox’s exponential format and polynomial format. It also describes a way to
list all elements of the Galois field, because some functions use such a list as
an input argument. Finally, it discusses the nonuniqueness of representations
of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least 2, GF(pm) is called an extension field. Integers alone cannot
represent the elements of GF(pm) in a straightforward way. MATLAB uses
two main conventions for representing elements of GF(pm): the exponential
format and the polynomial format.

Note Both the exponential format and the polynomial format are relative to
your choice of a particular primitive element A of GF(pm).

Exponential Format
This format uses the property that every nonzero element of GF(pm) can be
expressed as Ac for some integer c between 0 and pm-2. Higher exponents are
not needed, because the theory of Galois fields implies that every nonzero
element of GF(pm) satisfies the equation xq-1 = 1 where q = pm.

The use of the exponential format is shown in the table below.

Element of GF(pm) MATLAB Representation of the
Element

0 -Inf

A0 = 1 0

A1 1

... ...

Aq-2 where q = pm q-2

13-4

Representing Elements of Galois Fields

Although -Inf is the standard exponential representation of the zero element,
all negative integers are equivalent to -Inf when used as input arguments
in exponential format. This equivalence can be useful; for example, see the
concise line of code at the end of the section “Default Primitive Polynomials”
on page 13-8.

Note The equivalence of all negative integers and -Inf as exponential
formats means that, for example, -1 does not represent A-1, the multiplicative
inverse of A. Instead, -1 represents the zero element of the field.

Polynomial Format
The polynomial format uses the property that every element of GF(pm) can
be expressed as a polynomial in A with exponents between 0 and m-1, and
coefficients in GF(p). In the polynomial format, the element

A(1) + A(2) A + A(3) A2 + ... + A(m) Am-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note The Galois field functions in this toolbox represent a polynomial as a
vector that lists the coefficients in order of ascending powers of the variable.
This is the opposite of the order that other MATLAB functions use.

List of All Elements of a Galois Field
Some Galois field functions in this toolbox require an argument that lists all
elements of an extension field GF(pm). This is again relative to a particular
primitive element A of GF(pm). The proper format for the list of elements is
that of a matrix having pm rows, one for each element of the field. The matrix
has m columns, one for each coefficient of a power of A in the polynomial
format shown in “Polynomial Format” on page 13-5 above. The first row
contains only zeros because it corresponds to the zero element in GF(pm). If
k is between 2 and pm, then the kth row specifies the polynomial format of
the element Ak-2.

13-5

13 Galois Fields of Odd Characteristic

The minimal polynomial of A aids in the computation of this matrix, because
it tells how to express Am in terms of lower powers of A. For example, the
table below lists the elements of GF(32), where A is a root of the primitive
polynomial 2 + 2x + x2. This polynomial allows repeated use of the substitution

A2 = -2 - 2A = 1 + A

when performing the computations in the middle column of the table.

Elements of GF(9)

Exponential Format Polynomial Format Row of MATLAB
Matrix of Elements

A-Inf 0 0 0

A0 1 1 0

A1 A 0 1

A2 1+A 1 1

A3 A + A2 = A + 1 + A = 1 + 2A 1 2

A4 A + 2A2 = A + 2 + 2A = 2 2 0

A5 2A 0 2

A6 2A2 = 2 + 2A 2 2

A7 2A + 2A2 = 2A + 2 + 2A = 2 + A2 1

Example
An automatic way to generate the matrix whose rows are in the third column
of the table above is to use the code below.

p = 3; m = 2;
% Use the primitive polynomial 2 + 2x + x^2 for GF(9).
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);

The gftuple function is discussed in more detail in “Converting and
Simplifying Element Formats” on page 13-9.

13-6

Representing Elements of Galois Fields

Nonuniqueness of Representations
A given field has more than one primitive element. If two primitive elements
have different minimal polynomials, then the corresponding matrices of
elements will have their rows in a different order. If the two primitive
elements share the same minimal polynomial, then the matrix of elements of
the field is the same.

Note You can use whatever primitive element you want, as long as you
understand how the inputs and outputs of Galois field functions depend on
the choice of some primitive polynomial. It is usually best to use the same
primitive polynomial throughout a given script or function.

Other ways in which representations of elements are not unique arise from
the equations that Galois field elements satisfy. For example, an exponential
format of 8 in GF(9) is really the same as an exponential format of 0, because
A8 = 1 = A0 in GF(9). As another example, the substitution mentioned just
before the table shows that the polynomial format [0 0 1] is really the same as
the polynomial format [1 1].

13-7

13 Galois Fields of Odd Characteristic

Default Primitive Polynomials
This toolbox provides a default primitive polynomial for each extension field.
You can retrieve this polynomial using the gfprimdf function. The command

prim_poly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal
polynomial for GF(pm).

For example, the command below shows that the default primitive polynomial
for GF(9) is 2 + x + x2, not the polynomial used in “List of All Elements of a
Galois Field” on page 13-5.

poly1=gfprimdf(2,3);

poly1 =

2 1 1

To generate a list of elements of GF(pm) using the default primitive
polynomial, use the command

field = gftuple([-1:p^m-2]',m,p);

13-8

Converting and Simplifying Element Formats

Converting and Simplifying Element Formats
This section describes how to convert between the exponential and polynomial
formats for Galois field elements, as well as how to simplify a given
representation.

Converting to Simplest Polynomial Format
The gftuple function produces the simplest polynomial representation of an
element of GF(pm), given either an exponential representation or a polynomial
representation of that element. This can be useful for generating the list of
elements of GF(pm) that other functions require.

Using gftuple requires three arguments: one representing an element of
GF(pm), one indicating the primitive polynomial that MATLAB should use
when computing the output, and the prime p. The table below indicates how
gftuple behaves when given the first two arguments in various formats.

Behavior of gftuple Depending on Format of First Two Inputs

How to Specify
Element

How to Indicate
Primitive Polynomial

What gftuple
Produces

Exponential format;
c = any integer

Integer m > 1 Polynomial format of
Ac, where A is a root of
the default primitive
polynomial for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here

Exponential format;
c = any integer

Vector of coefficients of
primitive polynomial

Polynomial format of
Ac, where A is a root
of the given primitive
polynomial

Example: polynomial = gfprimdf(2,3); tp =
gftuple(6,polynomial,3); % c = 6 here

13-9

13 Galois Fields of Odd Characteristic

How to Specify
Element

How to Indicate
Primitive Polynomial

What gftuple
Produces

Polynomial format of
any degree

Integer m > 1 Polynomial format
of degree < m, using
default primitive
polynomial for GF(pm)
to simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);

Polynomial format of
any degree

Vector of coefficients of
primitive polynomial

Polynomial format
of degree < m, using
the given primitive
polynomial for GF(pm)
to simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0
1],polynomial,3);

The four examples that appear in the table above all produce the same vector
tp = [2, 1], but their different inputs to gftuple correspond to the lines of
the table. Each example expresses the fact that A6 = 2+A, where A is a root of
the (default) primitive polynomial 2 + x+ x2 for GF(32).

Example
This example shows how gfconv and gftuple combine to multiply two
polynomial-format elements of GF(34). Initially, gfconv multiplies the two
polynomials, treating the primitive element as if it were a variable. This
produces a high-order polynomial, which gftuple simplifies using the
polynomial equation that the primitive element satisfies. The final result is
the simplest polynomial format of the product.

p = 3; m = 4;
a = [1 2 0 1]; b = [2 2 1 2];
notsimple = gfconv(a,b,p) % a times b, using high powers of alpha
simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

The output is below.

13-10

Converting and Simplifying Element Formats

notsimple =

2 0 2 0 0 1 2

simple =

2 1 0 1

Example: Generating a List of Galois Field Elements
This example applies the conversion functionality to the task of generating a
matrix that lists all elements of a Galois field. A matrix that lists all field
elements is an input argument in functions such as gfadd and gfmul. The
variables field1 and field2 below have the format that such functions
expect.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field1 = gftuple([-1:p^m-2]',m,p);

prim_poly = gfprimdf(m,p); % Or any primitive polynomial
% for GF(p^m)
field2 = gftuple([-1:p^m-2]',prim_poly,p);

Converting to Simplest Exponential Format
The same function gftuple also produces the simplest exponential
representation of an element of GF(pm), given either an exponential
representation or a polynomial representation of that element. To retrieve
this output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in the table . In addition,
the variable expformat contains the simplest exponential format of the
element represented in polyformat. It is simplest in the sense that the
exponent is either -Inf or a number between 0 and pm-2.

13-11

13 Galois Fields of Odd Characteristic

Example
To recover the exponential format of the element 2 + A that the previous
section considered, use the commands below. In this case, polyformat
contains redundant information, while expformat contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

2 1

expformat =

6

This output appears at first to contradict the information in the table , but in
fact it does not. The table uses a different primitive element; two plus that
primitive element has the polynomial and exponential formats shown below.

prim_poly = [2 2 1];
[polyformat2, expformat2] = gftuple([2 1],prim_poly,3)

The output below reflects the information in the bottom line of the table.

polyformat2 =

2 1

expformat2 =

7

13-12

Arithmetic in Galois Fields

Arithmetic in Galois Fields
You can add, subtract, multiply, and divide elements of Galois fields using
the functions gfadd, gfsub, gfmul, and gfdiv, respectively. Each of these
functions has a mode for prime fields and a mode for extension fields.

Arithmetic in Prime Fields
Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd,
gfmul, gfsub, and gfdiv accept two arguments that represent elements of
GF(p) as integers between 0 and p-1. The third argument specifies p.

Example: Addition Table for GF(5)
The code below constructs an addition table for GF(5). If a and b are between
0 and 4, then the element gfp_add(a+1,b+1) represents the sum a+b in GF(5).
For example, gfp_add(3,5) = 1 because 2+4 is 1 modulo 5.

p = 5;
row = 0:p-1;
table = ones(p,1)*row;
gfp_add = gfadd(table,table',p)

The output is below.

gfp_add =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

Other values of p produce tables for different prime fields GF(p). Replacing
gfadd by gfmul, gfsub, or gfdiv produces a table for the corresponding
arithmetic operation in GF(p).

Arithmetic in Extension Fields
The same arithmetic functions can add elements of GF(pm) when m > 1, but
the format of the arguments is more complicated than in the case above. In

13-13

13 Galois Fields of Odd Characteristic

general, arithmetic in extension fields is more complicated than arithmetic in
prime fields; see the works listed in “Selected Bibliography for Galois Fields”
on page 13-22 for details about how the arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and
gfdiv use the first two arguments to represent elements of GF(pm) in
exponential format. The third argument, which is required, lists all elements
of GF(pm) as described in “List of All Elements of a Galois Field” on page 13-5.
The result is in exponential format.

Example: Addition Table for GF(9)
The code below constructs an addition table for GF(32), using exponential
formats relative to a root of the default primitive polynomial for GF(9). If a
and b are between -1 and 7, then the element gfpm_add(a+2,b+2) represents
the sum of Aa and Ab in GF(9). For example, gfpm_add(4,6) = 5 because

A2 + A4 = A5

Using the fourth and sixth rows of the matrix field, you can verify that

A2 + A4 = (1 + 2A) + (2 + 0A) = 3 + 2A = 0 + 2A = A5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).
field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.
row = -1:p^m-2;
table = ones(p^m,1)*row;
gfpm_add = gfadd(table,table',field)

The output is below.

13-14

Arithmetic in Galois Fields

gfpm_add =

-Inf 0 1 2 3 4 5 6 7
0 4 7 3 5 -Inf 2 1 6
1 7 5 0 4 6 -Inf 3 2
2 3 0 6 1 5 7 -Inf 4
3 5 4 1 7 2 6 0 -Inf
4 -Inf 6 5 2 0 3 7 1
5 2 -Inf 7 6 3 1 4 0
6 1 3 -Inf 0 7 4 2 5
7 6 2 4 -Inf 1 0 5 3

Note If you used a different primitive polynomial, then the tables would look
different. This makes sense because the ordering of the rows and columns of
the tables was based on that particular choice of primitive polynomial and not
on any natural ordering of the elements of GF(9).

Other values of p and m produce tables for different extension fields
GF(p^m). Replacing gfadd by gfmul, gfsub, or gfdiv produces a table for the
corresponding arithmetic operation in GF(p^m).

13-15

13 Galois Fields of Odd Characteristic

Polynomials over Prime Fields
A polynomial over GF(p) is a polynomial whose coefficients are elements of
GF(p). The Communications Toolbox provides functions for

• Changing polynomials in cosmetic ways

• Performing polynomial arithmetic

• Characterizing polynomials as primitive or irreducible

• Finding roots of polynomials in a Galois field

Note The Galois field functions in this toolbox represent a polynomial
over GF(p) for odd values of p as a vector that lists the coefficients in order
of ascending powers of the variable. This is the opposite of the order that
other MATLAB functions use.

Cosmetic Changes of Polynomials
To display the traditionally formatted polynomial that corresponds to a
row vector containing coefficients, use gfpretty. To truncate a polynomial
by removing all zero-coefficient terms that have exponents higher than the
degree of the polynomial, use gftrunc. For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])
gfpretty(polynom)

The output is below.

polynom =

1 20 394 10 0 0 29 3

2 3 6 7
1 + 20 X + 394 X + 10 X + 29 X + 3 X

13-16

Polynomials over Prime Fields

Note If you do not use a fixed-width font, then the spacing in the display
might not look correct.

Polynomial Arithmetic
The functions gfadd and gfsub add and subtract, respectively, polynomials
over GF(p). The gfconv function multiplies polynomials over GF(p). The
gfdeconv function divides polynomials in GF(p), producing a quotient
polynomial and a remainder polynomial. For example, the commands below
show that 2 + x + x2 times 1 + x over the field GF(3) is 2 + 2x2 + x3.

a = gfconv([2 1 1],[1 1],3)
[quot, remd] = gfdeconv(a,[2 1 1],3)

The output is below.

a =

2 0 2 1

quot =

1 1

remd =

0

The previously discussed functions gfadd and gfsub add and subtract,
respectively, polynomials. Because it uses a vector of coefficients to represent
a polynomial, MATLAB does not distinguish between adding two polynomials
and adding two row vectors elementwise.

Characterization of Polynomials
Given a polynomial over GF(p), the gfprimck function determines whether
it is irreducible and/or primitive. By definition, if it is primitive then it is

13-17

13 Galois Fields of Odd Characteristic

irreducible; however, the reverse is not necessarily true. The gfprimdf and
gfprimfd functions return primitive polynomials.

Given an element of GF(pm), the gfminpol function computes its minimal
polynomial over GF(p).

Example
For example, the code below reflects the irreducibility of all minimal
polynomials. However, the minimal polynomial of a nonprimitive element is
not a primitive polynomial.

p = 3; m = 4;
% Use default primitive polynomial here.

prim_poly = gfminpol(1,m,p);
ckprim = gfprimck(prim_poly,p);
% ckprim = 1, since prim_poly represents a primitive polynomial.

notprimpoly = gfminpol(5,m,p);
cknotprim = gfprimck(notprimpoly,p);
% cknotprim = 0 (irreducible but not primitive)
% since alpha^5 is not a primitive element when p = 3.

ckreducible = gfprimck([0 1 1],p);
% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials
Given a polynomial over GF(p), the gfroots function finds the roots of the
polynomial in a suitable extension field GF(pm). There are two ways to tell
MATLAB the degree m of the extension field GF(pm), as shown in the table
below.

13-18

Polynomials over Prime Fields

Formats for Second Argument of gfroots

Second Argument Represents

A positive integer m as in GF(pm). MATLAB uses the
default primitive polynomial in its
computations.

A row vector A primitive polynomial for GF(pm).
Here m is the degree of this primitive
polynomial.

Example: Roots of a Polynomial in GF(9)
The code below finds roots of the polynomial 1 + x2 + x3 in GF(9) and then
checks that they are indeed roots. The exponential format of elements of
GF(9) is used throughout.

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3

root = rts(ii);
rootsquared = gfmul(root,root,field);
rootcubed = gfmul(root,rootsquared,field);
answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
% Recall that 1 is really alpha to the zero power.
% If answer = -Inf, then the variable root represents
% a root of the polynomial.

end
answer

The output shows that A0 (which equals 1), A5, and A7 are roots.

roots =

0

13-19

13 Galois Fields of Odd Characteristic

5
7

answer =

-Inf -Inf -Inf

See the reference page for gfroots to see how gfroots can also provide you
with the polynomial formats of the roots and the list of all elements of the field.

13-20

Other Galois Field Functions

Other Galois Field Functions
See the online reference pages for information about these other Galois field
functions in the Communications Toolbox:

• gfcosets, which produces cyclotomic cosets

• gffilter, which filters data using GF(p) polynomials

• gfprimfd, which finds primitive polynomials

• gfrank, which computes the rank of a matrix over GF(p)

• gfrepcov, which converts one binary polynomial representation to another

13-21

13 Galois Fields of Odd Characteristic

Selected Bibliography for Galois Fields
[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading,
Mass., Addison-Wesley, 1983.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley,
1993.

[3] Lin, Shu and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

13-22

14

Functions — Categorical
List

“Signal Sources” (p. 14-3) Sources of random signals

“Performance Evaluation” (p. 14-4) Analyzing and visualizing
performance of a communication
system

“Source Coding” (p. 14-5) Quantization, companders, and
other kinds of source coding

“Error-Control Coding” (p. 14-6) Block and convolutional coding

“Interleaving/Deinterleaving” (p.
14-7)

Block and convolutional interleaving

“Analog Modulation/Demodulation”
(p. 14-9)

Passband amplitude, frequency, and
phase modulation

“Digital Modulation/Demodulation”
(p. 14-10)

Baseband digital modulation

“Pulse Shaping” (p. 14-11) Oversampling and shaping a signal

“Special Filters” (p. 14-11) Raised cosine and Hilbert filters

“Channels” (p. 14-11) Channel models for real, complex,
and binary signals

“Equalizers” (p. 14-13) Adaptive and MLSE equalizers

“Galois Field Computations” (p.
14-14)

Manipulating elements of finite
fields of even order

“Computations in Galois Fields of
Odd Characteristic” (p. 14-17)

Manipulating elements of finite
fields of odd order

14 Functions — Categorical List

“Utilities” (p. 14-19) Miscellaneous relevant functions

“Graphical User Interface” (p. 14-20) Bit error rate analysis tool

14-2

Signal Sources

Signal Sources
randerr Generate bit error patterns

randint Generate matrix of uniformly
distributed random integers

randsrc Generate random matrix using
prescribed alphabet

wgn Generate white Gaussian noise

14-3

14 Functions — Categorical List

Performance Evaluation
berawgn Bit error rate (BER) for uncoded

AWGN channels

bercoding Bit error rate (BER) for coded AWGN
channels

berconfint BER and confidence interval of
Monte Carlo simulation

berfading Bit error rate (BER) for Rayleigh
fading channels

berfit Fit a curve to nonsmooth empirical
BER data

bersync Bit error rate (BER) for imperfect
synchronization

biterr Compute number of bit errors and
bit error rate

distspec Compute the distance spectrum of a
convolutional code

eyediagram Generate an eye diagram

noisebw Equivalent noise bandwidth of a
filter

scatterplot Generate a scatter plot

semianalytic Calculate bit error rate using the
semianalytic technique

symerr Compute number of symbol errors
and symbol error rate

14-4

Source Coding

Source Coding
arithdeco Decode binary code using arithmetic

decoding

arithenco Encode a sequence of symbols using
arithmetic coding

compand Source code mu-law or A-law
compressor or expander

dpcmdeco Decode using differential pulse code
modulation

dpcmenco Encode using differential pulse code
modulation

dpcmopt Optimize differential pulse code
modulation parameters

huffmandeco Huffman decoder

huffmandict Generate Huffman code dictionary
for a source with known probability
model

huffmanenco Huffman encoder

lloyds Optimize quantization parameters
using the Lloyd algorithm

quantiz Produce a quantization index and a
quantized output value

14-5

14 Functions — Categorical List

Error-Control Coding
bchdec BCH decoder

bchenc BCH encoder

bchgenpoly Generator polynomial of BCH code

convenc Convolutionally encode binary data

cyclgen Produce parity-check and generator
matrices for cyclic code

cyclpoly Produce generator polynomials for a
cyclic code

decode Block decoder

encode Block encoder

gen2par Convert between parity-check and
generator matrices

gfweight Calculate the minimum distance of a
linear block code

hammgen Produce parity-check and generator
matrices for Hamming code

rsdec Reed-Solomon decoder

rsdecof Decode an ASCII file that was
encoded using Reed-Solomon code

rsenc Reed-Solomon encoder

rsencof Encode an ASCII file using
Reed-Solomon code

rsgenpoly Generator polynomial of
Reed-Solomon code

syndtable Produce syndrome decoding table

vitdec Convolutionally decode binary data
using the Viterbi algorithm

14-6

Interleaving/Deinterleaving

Interleaving/Deinterleaving
algdeintrlv Restore ordering of symbols using

algebraically derived permutation
table

algintrlv Reorder symbols using algebraically
derived permutation table

convdeintrlv Restore ordering of symbols using
shift registers

convintrlv Permute symbols using shift
registers

deintrlv Restore ordering of symbols

heldeintrlv Restore ordering of symbols
permuted using helintrlv

helintrlv Permute symbols using a helical
array

helscandeintrlv Restore ordering of symbols in a
helical pattern

helscanintrlv Reorder symbols in a helical pattern

intrlv Reorder sequence of symbols

matdeintrlv Restore ordering of symbols by filling
a matrix by columns and emptying
it by rows

matintrlv Reorder symbols by filling a matrix
by rows and emptying it by columns

muxdeintrlv Restore ordering of symbols using
specified shift registers

muxintrlv Permute symbols using shift
registers with specified delays

14-7

14 Functions — Categorical List

randdeintrlv Restore ordering of symbols using a
random permutation

randintrlv Reorder symbols using a random
permutation

14-8

Analog Modulation/Demodulation

Analog Modulation/Demodulation
amdemod Amplitude demodulation

ammod Amplitude modulation

fmdemod Frequency demodulation

fmmod Frequency modulation

pmdemod Phase demodulation

pmmod Phase modulation

ssbdemod Single sideband amplitude
demodulation

ssbmod Single sideband amplitude
modulation

14-9

14 Functions — Categorical List

Digital Modulation/Demodulation
dpskdemod Differential phase shift keying

demodulation

dpskmod Differential phase shift keying
modulation

fskdemod Frequency shift keying demodulation

fskmod Frequency shift keying modulation

genqamdemod General quadrature amplitude
demodulation

genqammod General quadrature amplitude
modulation

modnorm Scaling factor for normalizing
modulation output

mskdemod Minimum shift keying demodulation

mskmod Minimum shift keying modulation

oqpskdemod Offset quadrature phase shift keying
demodulation

oqpskmod Offset quadrature phase shift keying
modulation

pamdemod Pulse amplitude demodulation

pammod Pulse amplitude modulation

pskdemod Phase shift keying demodulation

pskmod Phase shift keying modulation

qamdemod Quadrature amplitude demodulation

qammod Quadrature amplitude modulation

14-10

Pulse Shaping

Pulse Shaping
intdump Integrate and dump

rcosflt Filter the input signal using a raised
cosine filter

rectpulse Rectangular pulse shaping

Special Filters
hank2sys Convert a Hankel matrix to a linear

system model

hilbiir Design a Hilbert transform IIR filter

rcosine Design a raised cosine filter

Lower-Level Functions for Special Filters

rcosfir Design a raised cosine FIR filter

rcosiir Design a raised cosine IIR filter

Channels
awgn Add white Gaussian noise to a signal

bsc Model a binary symmetric channel

filter (channel) Filter signal with channel object

rayleighchan Construct a Rayleigh fading channel
object

14-11

14 Functions — Categorical List

reset (channel) Reset channel object

ricianchan Construct a Rician fading channel
object

14-12

Equalizers

Equalizers
cma Construct a constant modulus

algorithm (CMA) object

dfe Construct a decision feedback
equalizer object

equalize Equalize a signal using an equalizer
object

lineareq Construct a linear equalizer object

lms Construct a least mean square
(LMS) adaptive algorithm object

mlseeq Equalize a linearly modulated signal
using the Viterbi algorithm

normlms Construct a normalized least mean
square (LMS) adaptive algorithm
object

reset (equalizer) Reset equalizer object

rls Construct a recursive least squares
(RLS) adaptive algorithm object

signlms Construct a signed least mean
square (LMS) adaptive algorithm
object

varlms Construct a variable-step-size
least mean square (LMS) adaptive
algorithm object

14-13

14 Functions — Categorical List

Galois Field Computations
convmtx Convolution matrix of Galois field

vector

cosets Produce cyclotomic cosets for a
Galois field

dftmtx Discrete Fourier transform matrix
in a Galois field

fft Discrete Fourier transform

filter (gf) One-dimensional digital filter over
a Galois field

gf Create a Galois field array

gftable Generate a file to accelerate Galois
field computations

ifft Inverse discrete Fourier transform

isprimitive True for a primitive polynomial for
a Galois field

log Logarithm in a Galois field

minpol Find the minimal polynomial of an
element of a Galois field

mldivide Matrix left division \ of Galois arrays

primpoly Find primitive polynomials for a
Galois field

Some additional MATLAB functions that the Communications Toolbox
enhances to process elements of Galois fields are below.

+ - Addition and subtraction of Galois
arrays

* / \ Matrix multiplication and division of
Galois arrays

.* ./ .\ Elementwise multiplication and
division of Galois arrays

14-14

Galois Field Computations

^ Matrix exponentiation of Galois
array

.^ Elementwise exponentiation of
Galois array

' .' Transpose of Galois array

==, ~= Relational operators for Galois
arrays

all True if all elements of a Galois vector
are nonzero

any True if any element of a Galois vector
is nonzero

conv Convolution of Galois vectors

deconv Deconvolution and polynomial
division

det Determinant of square Galois matrix

diag Diagonal Galois matrices and
diagonals of a Galois matrix

inv Inverse of Galois matrix

isempty True for empty Galois arrays

length Length of Galois vector

lu Lower-upper triangular factorization
of Galois array

polyval Evaluate polynomial in Galois field

rank Rank of a Galois array

reshape Reshape Galois array

roots Find polynomial roots across a
Galois field

size Size of Galois array

14-15

14 Functions — Categorical List

tril Extract lower triangular part of
Galois array

triu Extract upper triangular part of
Galois array

14-16

Computations in Galois Fields of Odd Characteristic

Computations in Galois Fields of Odd Characteristic
gfadd Add polynomials over a Galois field

gfconv Multiply polynomials over a Galois
field

gfcosets Produce cyclotomic cosets for a
Galois field

gfdeconv Divide polynomials over a Galois
field

gfdiv Divide elements of a Galois field

gffilter Filter data using polynomials over a
prime Galois field

gflineq Find a particular solution of Ax = b
over a prime Galois field

gfminpol Find the minimal polynomial of an
element of a Galois field

gfmul Multiply elements of a Galois field

gfpretty Display a polynomial in traditional
format

gfprimck Check whether a polynomial over a
Galois field is primitive

gfprimdf Provide default primitive
polynomials for a Galois field

gfprimfd Find primitive polynomials for a
Galois field

gfrank Compute the rank of a matrix over
a Galois field

gfrepcov Convert one binary polynomial
representation to another

gfroots Find the roots of a polynomial over a
prime Galois field

14-17

14 Functions — Categorical List

gfsub Subtract polynomials over a Galois
field

gftrunc Minimize the length of a polynomial
representation

gftuple Simplify or convert the format of
elements of a Galois field

14-18

Utilities

Utilities
bi2de Convert binary vectors to decimal

numbers

de2bi Convert decimal numbers to binary
vectors

istrellis True for a valid trellis structure

marcumq Generalized Marcum Q function

mask2shift Convert mask vector to shift for a
shift register configuration

oct2dec Convert octal numbers to decimal
numbers

poly2trellis Convert convolutional code
polynomials to trellis description

qfunc Q function

qfuncinv Inverse Q function

shift2mask Convert shift to mask vector for a
shift register configuration

vec2mat Convert a vector into a matrix

Some additional MATLAB functions in this category are below.

erf Error function

erfc Complementary error
function

14-19

14 Functions — Categorical List

Graphical User Interface
bertool Open the bit error rate analysis GUI

(BERTool)

14-20

15

Functions — Alphabetical
List

algdeintrlv

Purpose Restore ordering of symbols using algebraically derived permutation
table

Syntax deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
deintrlvd = algdeintrlv(data,num,'welch-costas',alph)

Description deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
restores the original ordering of the elements in data using
a permutation table that is algebraically derived using the
Takeshita-Costello method. num is the number of elements in data if
data is a vector, or the number of rows of data if data is a matrix with
multiple columns. In the Takeshita-Costello method, num must be a
power of 2. The multiplicative factor, k, must be an odd integer less
than num, and the cyclic shift, h, must be a nonnegative integer less
than num. If data is a matrix with multiple rows and columns, then the
function processes the columns independently.

deintrlvd = algdeintrlv(data,num,'welch-costas',alph) uses the
Welch-Costas method. In the Welch-Costas method, num+1 must be a
prime number. alph is an integer between 1 and num that represents a
primitive element of the finite field GF(num+1).

To use this function as an inverse of the algintrlv function, use the
same inputs in both functions, except for the data input. In that case,
the two functions are inverses in the sense that applying algintrlv
followed by algdeintrlv leaves data unchanged.

Examples The code below uses the Takeshita-Costello method of algintrlv and
algdeintrlv.

num = 16; % Power of 2
ncols = 3; % Number of columns of data to interleave
data = rand(num,ncols); % Random data to interleave
k = 3;
h = 4;
intdata = algintrlv(data,num,'takeshita-costello',k,h);
deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h);

15-2

algdeintrlv

See Also algintrlv, Chapter 7, “Interleaving”

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. pp. 419.

15-3

algintrlv

Purpose Reorder symbols using algebraically derived permutation table

Syntax intrlvd = algintrlv(data,num,'takeshita-costello',k,h)
intrlvd = algintrlv(data,num,'welch-costas',alph)

Description intrlvd = algintrlv(data,num,'takeshita-costello',k,h)
rearranges the elements in data using a permutation table that is
algebraically derived using the Takeshita-Costello method. num is
the number of elements in data if data is a vector, or the number
of rows of data if data is a matrix with multiple columns. In the
Takeshita-Costello method, num must be a power of 2. The multiplicative
factor, k, must be an odd integer less than num, and the cyclic shift, h,
must be a nonnegative integer less than num. If data is a matrix with
multiple rows and columns, then the function processes the columns
independently.

intrlvd = algintrlv(data,num,'welch-costas',alph) uses the
Welch-Costas method. In the Welch-Costas method, num+1 must be a
prime number. alph is an integer between 1 and num that represents a
primitive element of the finite field GF(num+1). This means that every
nonzero element of GF(num+1) can be expressed as alph raised to some
integer power.

Examples This example illustrates how to use the Welch-Costas method of
algebraic interleaving.

1 Define num and the data to interleave.

num = 10; % Integer such that num+1 is prime
ncols = 3; % Number of columns of data to interleave
data = randint(num,ncols,num); % Random data to interleave

2 Find primitive polynomials of the finite field GF(num+1). The
gfprimfd function represents each primitive polynomial as a row
containing the coefficients in order of ascending powers.

pr = gfprimfd(1,'all',num+1) % Primitive polynomials of GF(num+1)
pr =

15-4

algintrlv

3 1
4 1
5 1
9 1

3 Notice from the output above that pr has two columns and that the
second column consists solely of 1s. In other words, each primitive
polynomial is a monic degree-one polynomial. This is because
num+1 is prime. As a result, to find the primitive element that is a
root of each primitive polynomial, find a root of the polynomial by
subtracting the first column of pr from num+1.

primel = (num+1)-pr(:,1) % Primitive elements of GF(num+1)
primel =

8
7
6
2

4 Now define alph as one of the elements of primel and use algintrlv.

alph = primel(1); % Choose one primitive element.
intrlvd = algintrlv(data,num,'Welch-Costas',alph); % Interleave.

Algorithm • A Takeshita-Costello interleaver uses a length-num cycle vector whose
nth element is mod(k*(n-1)*n/2, num) for integers n between 1
and num. The function creates a permutation vector by listing, for
each element of the cycle vector in ascending order, one plus the
element’s successor. The interleaver’s actual permutation table is
the result of shifting the elements of the permutation vector left by
h. (The function performs all computations on numbers and indices
modulo num.)

• A Welch-Costas interleaver uses a permutation that maps an integer
K to mod(AK,num+1)-1.

15-5

algintrlv

See Also algdeintrlv, Chapter 7, “Interleaving”

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. pp. 419.

15-6

amdemod

Purpose Amplitude demodulation

Syntax z = amdemod(y,Fc,Fs)
z = amdemod(y,Fc,Fs,ini_phase)
z = amdemod(y,Fc,Fs,ini_phase,carramp)
z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den)

Description z = amdemod(y,Fc,Fs) demodulates the amplitude modulated signal y
from a carrier signal with frequency Fc (Hz). The carrier signal and y
have sample frequency Fs (Hz). The modulated signal y has zero initial
phase and zero carrier amplitude, so it represents suppressed carrier
modulation. The demodulation process uses the lowpass filter specified
by [num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW) where BW
is the bandwidth of the original signal that was modulated.

z = amdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the
modulated signal in radians.

z = amdemod(y,Fc,Fs,ini_phase,carramp) demodulates a signal that
was created via transmitted carrier modulation instead of suppressed
carrier modulation. carramp is the carrier amplitude of the modulated
signal.

z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den) specifies
the numerator and denominator of the lowpass filter used in the
demodulation.

Examples The code below illustrates the use of a nondefault filter.

t = .01;
Fc = 10000; Fs = 80000;
t = [0:1/Fs:0.01]';
s = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Original signal

15-7

amdemod

[num,den] = butter(10,Fc*2/Fs); % Lowpass filter

y1 = ammod(s,Fc,Fs); % Modulate.
s1 = amdemod(y1,Fc,Fs,0,0,num,den); % Demodulate.

See Also ammod, ssbdemod, fmdemod, pmdemod, Chapter 8, “Modulation”

15-8

ammod

Purpose Amplitude modulation

Syntax y = ammod(x,Fc,Fs)
y = ammod(x,Fc,Fs,ini_phase)
y = ammod(x,Fc,Fs,ini_phase,carramp)

Description y = ammod(x,Fc,Fs) uses the message signal x to modulate a carrier
signal with frequency Fc (Hz) using amplitude modulation. The carrier
signal and x have sample frequency Fs (Hz). The modulated signal
has zero initial phase and zero carrier amplitude, so the result is
suppressed-carrier modulation.

Note The x, Fc, and Fs input arguments must satisfy Fs > 2(Fc + BW),
where BW is the bandwidth of the modulating signal x.

y = ammod(x,Fc,Fs,ini_phase) specifies the initial phase in the
modulated signal y in radians.

y = ammod(x,Fc,Fs,ini_phase,carramp) performs transmitted-carrier
modulation instead of suppressed-carrier modulation. The carrier
amplitude is carramp.

Examples The example below compares double-sideband and single-sideband
amplitude modulation.

% Sample the signal 100 times per second, for 2 seconds.
Fs = 100;
t = [0:2*Fs+1]'/Fs;
Fc = 10; % Carrier frequency
x = sin(2*pi*t); % Sinusoidal signal

% Modulate x using single- and double-sideband AM.
ydouble = ammod(x,Fc,Fs);
ysingle = ssbmod(x,Fc,Fs);

15-9

ammod

% Compute spectra of both modulated signals.
zdouble = fft(ydouble);
zdouble = abs(zdouble(1:length(zdouble)/2+1));
frqdouble = [0:length(zdouble)-1]*Fs/length(zdouble)/2;
zsingle = fft(ysingle);
zsingle = abs(zsingle(1:length(zsingle)/2+1));
frqsingle = [0:length(zsingle)-1]*Fs/length(zsingle)/2;

% Plot spectra of both modulated signals.
figure;
subplot(2,1,1); plot(frqdouble,zdouble);
title('Spectrum of double-sideband signal');
subplot(2,1,2); plot(frqsingle,zsingle);
title('Spectrum of single-sideband signal');

See Also amdemod, ssbmod, fmmod, pmmod, Chapter 8, “Modulation”

15-10

arithdeco

Purpose Decode binary code using arithmetic decoding

Syntax dseq = arithdeco(code,counts,len)

Description dseq = arithdeco(code,counts,len) decodes the binary arithmetic
code in the vector code to recover the corresponding sequence of len
symbols. The vector counts represents the source’s statistics by listing
the number of times each symbol of the source’s alphabet occurs in a
test data set. This function assumes that the data in code was produced
by the arithenco function.

Examples This example is similar to the example on the arithenco reference
page, except that it uses arithdeco to recover the original sequence.

counts = [99 1]; % A one occurs 99% of the time.
len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq)); % Decode.
isequal(seq,dseq) % Check that dseq matches the original seq.

The output is

ans =

1

Algorithm This function uses the algorithm described in [1].

See Also arithenco, “Arithmetic Coding” on page 5-16

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.

15-11

arithenco

Purpose Encode a sequence of symbols using arithmetic coding

Syntax code = arithenco(seq,counts)

Description code = arithenco(seq,counts) generates the binary arithmetic
code corresponding to the sequence of symbols specified in the vector
seq. The vector counts represents the source’s statistics by listing
the number of times each symbol of the source’s alphabet occurs in
a test data set.

Examples This example illustrates the compression that arithmetic coding can
accomplish in some situations. A source has a two-symbol alphabet and
produces a test data set in which 99% of the symbols are 1s. Encoding
1000 symbols from this source produces a code vector having many
fewer than 1000 elements. The actual number of elements in code
varies, depending on the particular random sequence contained in seq.

counts = [99 1]; % A one occurs 99% of the time.
len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
code = arithenco(seq,counts);
s = size(code) % length of code is only 8.3% of length of seq.

The output is

s =

1 83

Algorithm This function uses the algorithm described in [1].

See Also arithdeco, “Arithmetic Coding” on page 5-16

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.

15-12

awgn

Purpose Add white Gaussian noise to a signal

Syntax y = awgn(x,snr)
y = awgn(x,snr,sigpower)
y = awgn(x,snr,'measured')
y = awgn(x,snr,sigpower,state)
y = awgn(x,snr,'measured',state)
y = awgn(...,powertype)

Description y = awgn(x,snr) adds white Gaussian noise to the vector signal x.
The scalar snr specifies the signal-to-noise ratio per sample, in dB. If x
is complex, then awgn adds complex noise. This syntax assumes that
the power of x is 0 dBW.

y = awgn(x,snr,sigpower) is the same as the syntax above, except
that sigpower is the power of x in dBW.

y = awgn(x,snr,'measured') is the same as y = awgn(x,snr), except
that awgn measures the power of x before adding noise.

y = awgn(x,snr,sigpower,state) is the same as y =
awgn(x,snr,sigpower), except that awgn first resets the state of the
normal random number generator randn to the integer state.

y = awgn(x,snr,'measured',state) is the same as y =
awgn(x,snr,'measured'), except that awgn first resets the state of
normal random number generator randn to the integer state.

y = awgn(...,powertype) is the same as the previous syntaxes, except
that the string powertype specifies the units of snr and sigpower.
Choices for powertype are ’db’ and ’linear’. If powertype is ’db’, then
snr is measured in dB and sigpower is measured in dBW. If powertype
is ’linear’, then snr is measured as a ratio and sigpower is measured
in watts.

Relationship Among SNR, Es/N0, and Eb/N0

For the relationships between SNR and other measures of the relative
power of the noise, see “Describing the Noise Level of an AWGN
Channel” on page 10-3.

15-13

awgn

Examples The commands below add white Gaussian noise to a sawtooth signal. It
then plots the original and noisy signals.

t = 0:.1:10;
x = sawtooth(t); % Create sawtooth signal.
y = awgn(x,10,'measured'); % Add white Gaussian noise.
plot(t,x,t,y) % Plot both signals.
legend('Original signal','Signal with AWGN');

Several other examples that illustrate the use of awgn are in Chapter 1,
“Getting Started”. The following demos also use awgn: basicsimdemo,
vitsimdemo, and scattereyedemo.

See Also wgn, randn, bsc, “AWGN Channel” on page 10-3

15-14

matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/basicsimdemo.html%27%5D%29;
matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/vitsimdemo.html%27%5D%29;
matlab:helpview%28%5Bmatlabroot%20%27/toolbox/comm/commdemos/html/scattereyedemo.html%27%5D%29;

bchdec

Purpose BCH decoder

Syntax decoded = bchdec(code,n,k)
decoded = bchdec(...,paritypos)
[decoded,cnumerr] = bchdec(...)
[decoded,cnumerr,ccode] = bchdec(...)

Description decoded = bchdec(code,n,k) attempts to decode the received signal
in code using an [n,k] BCH decoder with the narrow-sense generator
polynomial. code is a Galois array of symbols over GF(2). Each
n-element row of code represents a corrupted systematic codeword,
where the parity symbols are at the end and the leftmost symbol is the
most significant symbol.

In the Galois array decoded, each row represents the attempt at
decoding the corresponding row in code. A decoding failure occurs if
bchdec detects more than t errors in a row of code, where t is the
number of correctable errors as reported by bchgenpoly. In the case of
a decoding failure, bchdec forms the corresponding row of decoded by
merely removing n-k symbols from the end of the row of code.

decoded = bchdec(...,paritypos) specifies whether the parity
symbols in code were appended or prepended to the message in
the coding operation. The string paritypos can be either 'end' or
'beginning'. The default is 'end'. If paritypos is 'beginning', then
a decoding failure causes bchdec to remove n-k symbols from the
beginning rather than the end of the row.

[decoded,cnumerr] = bchdec(...) returns a column vector
cnumerr, each element of which is the number of corrected errors in
the corresponding row of code. A value of -1 in cnumerr indicates a
decoding failure in that row in code.

[decoded,cnumerr,ccode] = bchdec(...) returns ccode, the
corrected version of code. The Galois array ccode has the same format
as code. If a decoding failure occurs in a certain row of code, then the
corresponding row in ccode contains that row unchanged.

15-15

bchdec

Examples The script below encodes a (random) message, simulates the addition of
noise to the code, and then decodes the message.

m = 4; n = 2^m-1; % Codeword length
k = 5; % Message length
nwords = 10; % Number of words to encode
msg = gf(randint(nwords,k));
% Find t, the error-correction capability.
[genpoly,t] = bchgenpoly(n,k);
% Define t2, the number of errors to add in this example.
t2 = t;

% Encode the message.
code = bchenc(msg,n,k);
% Corrupt up to t2 bits in each codeword.
noisycode = code + randerr(nwords,n,1:t2);
% Decode the noisy code.
[newmsg,err,ccode] = bchdec(noisycode,n,k);
if ccode==code

disp('All errors were corrected.')
end
if newmsg==msg

disp('The message was recovered perfectly.')
end

In this case, all errors are corrected and the message is recovered
perfectly. However, if you change the definition of t2 to

t2 = t+1;

then some codewords will contain more than t errors. This is too many
errors, and some are not corrected.

Algorithm bchdec uses the Berlekamp-Massey decoding algorithm. For
information about this algorithm, see the works listed in References on
page 17 below.

15-16

bchdec

Limitations The maximum allowable value of n is 65535.

See Also bchenc, bchgenpoly, “Block Coding” on page 6-2

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.

15-17

bchenc

Purpose BCH encoder

Syntax code = bchenc(msg,n,k)
code = bchenc(...,paritypos)

Description code = bchenc(msg,n,k) encodes the message in msg using an [n,k]
BCH encoder with the narrow-sense generator polynomial. msg is
a Galois array of symbols over GF(2). Each k-element row of msg
represents a message word, where the leftmost symbol is the most
significant symbol. Parity symbols are at the end of each word in the
output Galois array code.

code = bchenc(...,paritypos) specifies whether bchenc appends or
prepends the parity symbols to the input message to form code. The
string paritypos can be either 'end' or 'beginning'. The default is 'end'.

The tables below list valid [n,k] pairs for small values of n, as well as the
corresponding values of the error-correction capability, t.

n k t

7 4 1

n k t

15 11 1

15 7 2

15 5 3

n k t

31 26 1

31 21 2

15-18

bchenc

n k t

31 16 3

31 11 5

31 6 7

n k t

63 57 1

63 51 2

63 45 3

63 39 4

63 36 5

63 30 6

63 24 7

63 18 10

63 16 11

63 10 13

63 7 15

n k t

127 120 1

127 113 2

127 106 3

127 99 4

127 92 5

15-19

bchenc

n k t

127 85 6

127 78 7

127 71 9

127 64 10

127 57 11

127 50 13

127 43 14

127 36 15

127 29 21

127 22 23

127 15 27

127 8 31

n k t

255 247 1

255 239 2

255 231 3

255 223 4

255 215 5

255 207 6

255 199 7

255 191 8

255 187 9

255 179 10

15-20

bchenc

n k t

255 171 11

255 163 12

255 155 13

255 147 14

255 139 15

255 131 18

255 123 19

255 115 21

255 107 22

255 99 23

255 91 25

255 87 26

255 79 27

255 71 29

255 63 30

255 55 31

255 47 42

255 45 43

255 37 45

255 29 47

255 21 55

255 13 59

255 9 63

15-21

bchenc

n k t

511 502 1

511 493 2

511 484 3

511 475 4

511 466 5

511 457 6

511 448 7

511 439 8

511 430 9

511 421 10

511 412 11

511 403 12

511 394 13

511 385 14

511 376 15

511 367 16

511 358 18

511 349 19

511 340 20

511 331 21

511 322 22

511 313 23

511 304 25

511 295 26

15-22

bchenc

n k t

511 286 27

511 277 28

511 268 29

511 259 30

511 250 31

511 241 36

511 238 37

511 229 38

511 220 39

511 211 41

511 202 42

511 193 43

511 184 45

511 175 46

511 166 47

511 157 51

511 148 53

511 139 54

511 130 55

511 121 58

511 112 59

511 103 61

511 94 62

511 85 63

15-23

bchenc

n k t

511 76 85

511 67 87

511 58 91

511 49 93

511 40 95

511 31 109

511 28 111

511 19 119

511 10 121

Examples See the example on the reference page for the function bchdec.

Limitations The maximum allowable value of n is 65535.

See Also bchdec, bchgenpoly, “Block Coding” on page 6-2

15-24

bchgenpoly

Purpose Generator polynomial of BCH code

Syntax genpoly = bchgenpoly(n,k)
genpoly = bchgenpoly(n,k,prim_poly)
[genpoly,t] = bchgenpoly(...)

Description genpoly = bchgenpoly(n,k) returns the narrow-sense generator
polynomial of a BCH code with codeword length n and message length
k. The codeword length n must have the form 2m-1 for some integer m.
The output genpoly is a Galois row vector in GF(2) that represents the
coefficients of the generator polynomial in order of descending powers.
The narrow-sense generator polynomial is (X - A1)(X - A2)...(X - An-k)
where A is a root of the default primitive polynomial for the field
GF(n+1).

Note Although the bchgenpoly function performs intermediate
computations in GF(n+1), the final polynomial has binary coefficients.
The output from bchgenpoly is a Galois vector in GF(2) rather than
in GF(n+1).

genpoly = bchgenpoly(n,k,prim_poly) is the same as the syntax
above, except that prim_poly specifies the primitive polynomial for
GF(n+1) that has A as a root. prim_poly is an integer whose binary
representation indicates the coefficients of the primitive polynomial. To
use the default primitive polynomial for GF(n+1), set prim_poly to [].

[genpoly,t] = bchgenpoly(...) returns t, the error-correction
capability of the code.

Examples The results below show that a [15,11] BCH code can correct one error
and has generator polynomial X4 + X + 1.

m = 4;
n = 2^m-1; % Codeword length
k = 11; % Message length

15-25

bchgenpoly

% Get generator polynomial and error-correction capability.
[genpoly,t] = bchgenpoly(n,k)

The output is

genpoly = GF(2) array.

Array elements =

1 0 0 1 1

t =

1

Limitations The maximum allowable value of n is 65535.

See Also bchenc, bchdec, “Block Coding” on page 6-2

References [1] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-correcting Codes,
2nd ed., Cambridge, Mass., MIT Press, 1972.

15-26

berawgn

Purpose Bit error rate (BER) for uncoded AWGN channels

Syntax ber = berawgn(EbNo,'pam',M)
ber = berawgn(EbNo,'qam',M)
ber = berawgn(EbNo,'psk',M,dataenc)
ber = berawgn(EbNo,'dpsk',M)
ber = berawgn(EbNo,'fsk',M,coherence)
ber = berawgn(EbNo,'msk',dataenc)
berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin)

Graphical
Interface

As an alternative to the berawgn function, invoke the BERTool GUI
(bertool) and use the Theoretical panel.

Description For All Syntaxes

The berawgn function returns the BER of various modulation schemes
over an additive white Gaussian noise (AWGN) channel. The first
input argument, EbNo, is the ratio of bit energy to noise power spectral
density, in dB. If EbNo is a vector, then the output ber is a vector of the
same size, whose elements correspond to the different Eb/N0 levels. The
supported modulation schemes, which correspond to the second input
argument to the function, are in the table below.

Modulation Scheme Second Input Argument

Continuous phase frequency shift
keying (CPFSK)

'cpfsk'

Differential phase shift keying
(DPSK)

'dpsk'

Frequency shift keying (FSK) 'fsk'

Minimum shift keying (MSK) 'msk'

Phase shift keying (PSK) 'psk'

15-27

berawgn

Modulation Scheme Second Input Argument

Pulse amplitude modulation
(PAM)

'pam'

Quadrature amplitude
modulation (QAM)

'qam'

Most syntaxes also have an M input that specifies the alphabet size for
the modulation. M must have the form 2k for some positive integer k.

For Specific Syntaxes

ber = berawgn(EbNo,'pam',M) returns the BER of uncoded PAM over
an AWGN channel with coherent demodulation, assuming a Gray-coded
signal constellation.

ber = berawgn(EbNo,'qam',M) returns the BER of uncoded QAM over
an AWGN channel with coherent demodulation, assuming a Gray-coded
signal constellation. The alphabet size, M, must be at least 4. For cross
QAM (M not a perfect square), the output ber is an upper bound on the
BER. (Note that the upper bound used here is slightly looser than the
upper bound used for cross QAM in the semianalytic function.)

ber = berawgn(EbNo,'psk',M,dataenc) returns the BER of coherently
detected uncoded PSK over an AWGN channel, assuming a Gray-coded
signal constellation. dataenc is either 'diff' for differential data
encoding or 'nondiff' for nondifferential data encoding. If dataenc is
'diff' then M must be no greater than 4. For details on this calculation,
see [2].

ber = berawgn(EbNo,'dpsk',M) returns the BER of uncoded DPSK
modulation over an AWGN channel.

ber = berawgn(EbNo,'fsk',M,coherence) returns the BER of
orthogonal uncoded FSK modulation over an AWGN channel. coherence
is either 'coherent' for coherent demodulation or 'noncoherent' for
noncoherent demodulation. M must be no greater than 64.

ber = berawgn(EbNo,'msk',dataenc) returns the BER of coherently
detected uncoded MSK modulation over an AWGN channel. dataenc is

15-28

berawgn

either 'diff' for differential data encoding or 'nondiff' for nondifferential
data encoding. For details on this calculation, see [2].

berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin) returns a lower
bound on the BER of uncoded CPFSK modulation over an AWGN
channel. modindex is the modulation index, a positive real number.
kmin is the number of paths having the minimum distance; if this
number is unknown, you can assume a value of 1.

Examples An example using this function is in “Comparing Theoretical and
Empirical Error Rates” on page 3-10.

Limitations The numerical accuracy of this function’s output is limited by

• Approximations in the analysis leading to the closed-form expressions
that the function uses

• Approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output. However, DQPSK ('dpsk' with M=4) and differentially
encoded PSK ('psk' with 'diff') have additional limitations, such that
the function produces an output of 0 if EbNo is large.

See Also bercoding, berfading, bersync, “Theoretical Performance Results”
on page 3-9

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital
Phase Modulation, New York, Plenum Press, 1986.

[2] Lindsey, William C. and Marvin K. Simon, Telecommunication
Systems Engineering, Englewood Cliffs, N.J., Prentice-Hall, 1973.

[3] Proakis, John G., Digital Communications, 4th ed., New York,
McGraw-Hill, 2001.

15-29

bercoding

Purpose Bit error rate (BER) for coded AWGN channels

Syntax berub = bercoding(EbNo,'conv',decision,coderate,dspec)
berub = bercoding(EbNo,'block','hard',n,k,dmin)
berub = bercoding(EbNo,'block','soft',n,k,dmin)

Graphical
Interface

As an alternative to the bercoding function, invoke the BERTool GUI
(bertool) and use the Theoretical panel.

Description berub = bercoding(EbNo,'conv',decision,coderate,dspec) returns
an upper bound on the BER of a binary convolutional code with coherent
phase shift keying (PSK) modulation over an additive white Gaussian
noise (AWGN) channel. EbNo is the ratio of bit energy to noise power
spectral density, in dB. If EbNo is a vector, then berub is a vector of the
same size, whose elements correspond to the different Eb/N0 levels.
To specify hard-decision decoding, set decision to 'hard'; to specify
soft-decision decoding, set decision to 'soft'. The convolutional code
has code rate equal to coderate. The dspec input is a structure that
contains information about the code’s distance spectrum:

• dspec.dfree is the minimum free distance of the code

• dspec.weight is the weight spectrum of the code

To find distance spectra for some sample codes, use the distspec
function or see [1] and [3].

Note The results for binary PSK and quaternary PSK modulation are
the same. This function does not support M-ary PSK when M is other
than 2 or 4.

berub = bercoding(EbNo,'block','hard',n,k,dmin) returns an upper
bound on the BER of an [n,k] binary block code with hard-decision
decoding and coherent BPSK or QPSK modulation. dmin is the
minimum distance of the code.

15-30

bercoding

berub = bercoding(EbNo,'block','soft',n,k,dmin) returns an upper
bound on the BER of an [n,k] binary block code with soft-decision
decoding and coherent BPSK or QPSK modulation. dmin is the
minimum distance of the code.

Examples An example using this function for a convolutional code is in “Plotting
Theoretical Error Rates” on page 3-9.

The next example finds an upper bound on the theoretical BER of a
block code. It also uses the berfit function to perform curve fitting.

n = 23; k = 12; % Lengths of codewords and messages
dmin = 7; % Minimum distance
EbNo = 1:10;
ber_block = bercoding(EbNo,'block','hard',n,k,dmin);
berfit(EbNo,ber_block) % Plot BER points and fitted curve.
ylabel('Bit Error Probability');
title('BER Upper Bound vs. Eb/No, with Best Curve Fit');

15-31

bercoding

Limitations The numerical accuracy of this function’s output is limited by

• Approximations in the analysis leading to the closed-form expressions
that the function uses

• Approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output.

See Also berawgn, berfading, bersync, distspec, “Theoretical Performance
Results” on page 3-9

References [1] Cedervall, M., and R. Johannesson, "A Fast Algorithm for
Computing Distance Spectrum of Convolutional Codes," IEEE
Transactions on Information Theory, Vol. IT-35, No. 6, Nov. 1989, pp.
1146-1159.

[2] Frenger, Pål, Pål Orten, and Tony Ottosson, “Convolutional Codes
with Optimum Distance Spectrum,” IEEE Communications Letters, Vol.
3, No. 11, Nov. 1999, pp. 317-319.

[3] Odenwalder, J. P., Error Control Coding Handbook, Final Report,
LINKABIT Corporation, San Diego, CA, 1976.

[4] Proakis, John G., Digital Communications, 4th ed., New York,
McGraw-Hill, 2001.

15-32

berconfint

Purpose BER and confidence interval of Monte Carlo simulation

Syntax [ber,interval] = berconfint(nerrs,ntrials)
[ber,interval] = berconfint(nerrs,ntrials,level)

Description [ber,interval] = berconfint(nerrs,ntrials) returns the error
probability estimate ber and the 95% confidence interval interval for a
Monte Carlo simulation of ntrials trials with nerrs errors. interval
is a two-element vector that lists the endpoints of the interval. If the
errors and trials are measured in bits, then the error probability is the
bit error rate (BER); if the errors and trials are measured in symbols,
then the error probability is the symbol error rate (SER).

[ber,interval] = berconfint(nerrs,ntrials,level) specifies the
confidence level as a real number between 0 and 1.

Examples If a simulation of a communication system results in 100 bit errors
in 106 trials, then the BER (bit error rate) for that simulation is the
quotient 10-4. The command below finds the 95% confidence interval
for the BER of the system.

nerrs = 100; % Number of bit errors in simulation
ntrials = 10^6; % Number of trials in simulation
level = 0.95; % Confidence level
[ber,interval] = berconfint(nerrs,ntrials,level)

The output below shows that, with 95% confidence, the BER for the
system is between 0.0000814 and 0.0001216.

15-33

berconfint

ber =

1.0000e-004

interval =

1.0e-003 *

0.0814 0.1216

For an example that uses the output of berconfint to plot error bars
on a BER plot, see “Example: Curve Fitting for an Error Rate Plot” on
page 3-14

See Also binofit (Statistics Toolbox), mle (Statistics Toolbox), Chapter 3,
“Performance Evaluation”

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.

15-34

berfading

Purpose Bit error rate (BER) for Rayleigh fading channels

Syntax ber = berfading(EbNo,modtype,M,divorder)
ber = berfading(EbNo,'fsk',2,divorder,coherence)

Graphical
Interface

As an alternative to the berfading function, invoke the BERTool GUI
(bertool) and use the Theoretical panel.

Description ber = berfading(EbNo,modtype,M,divorder) returns the BER of
differential phase shift keying (DPSK) or coherent phase shift keying
(PSK) modulation over an flat Rayleigh fading channel, with no coding.
EbNo is the average ratio of bit energy to noise power spectral density,
in dB, for each diversity channel. If EbNo is a vector, then the output
ber is a vector of the same size, whose elements correspond to the
different Eb/N0 levels. modtype represents the type of modulation, and
can be either 'dpsk' or 'psk'. The argument M is the alphabet size, which
must be a positive integer power of 2. divorder is the diversity order, a
positive integer. If divorder exceeds 1, then M must be 2 or 4 because no
well-known theoretical results exist for larger values of M.

ber = berfading(EbNo,'fsk',2,divorder,coherence) returns the
BER of uncoded frequency shift keying (FSK) modulation over an
flat Rayleigh fading channel. coherence indicates whether the
function uses coherent or noncoherent demodulation, and can be either
'coherent' or 'noncoherent'.

Examples The example below computes and plots the BER for uncoded DQPSK
(differential quaternary phase shift keying) modulation over an flat
Rayleigh fading channel.

EbNo = 0:5:35;
M = 4; % Use DQPSK, so M = 4.
divorder = 1;
ber = berfading(EbNo,'dpsk',M,divorder);
semilogy(EbNo,ber,'b.-');

15-35

berfading

Limitations The numerical accuracy of this function’s output is limited by

• Approximations in the analysis leading to the closed-form expressions
that the function uses

• Approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output.

See Also berawgn, bercoding, bersync, “Theoretical Performance Results” on
page 3-9

References [1] Proakis, John G., Digital Communications, 4th ed., New York,
McGraw-Hill, 2001.

15-36

berfit

Purpose Fit a curve to nonsmooth empirical BER data

Syntax fitber = berfit(empEbNo,empber)
fitber = berfit(empEbNo,empber,fitEbNo)
fitber = berfit(empEbNo,empber,fitEbNo,options)
fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)
[fitber,fitprops] = berfit(...)
berfit(...)
berfit(empEbNo,empber,fitEbNo,options,'all')

Description fitber = berfit(empEbNo,empber) fits a curve to the empirical BER
data in the vector empber and returns a vector of fitted bit error rate
(BER) points. The values in empber and fitber correspond to the
Eb/N0 values, in dB, given by empEbNo. The vector empEbNo must be in
ascending order and must have at least four elements.

Note The berfit function is intended for curve fitting or interpolation,
not extrapolation. Extrapolating BER data beyond an order of
magnitude below the smallest empirical BER value is inherently
unreliable.

fitber = berfit(empEbNo,empber,fitEbNo) fits a curve to the
empirical BER data in the vector empber corresponding to the Eb/N0
values, in dB, given by empEbNo. The function then evaluates the curve
at the Eb/N0 values, in dB, given by fitEbNo and returns the fitted BER
points. The length of fitEbNo must equal or exceed that of empEbNo.

fitber = berfit(empEbNo,empber,fitEbNo,options) uses the
structure options to override the default options used for optimization.
These options are the ones used by the fminsearch function. You can
create the options structure using the optimset function. Particularly
relevant fields are described in the table below.

15-37

berfit

Field Description

options.Display Level of display: 'off' (default)
displays no output; 'iter' displays
output at each iteration; 'final'
displays only the final output;
'notify' displays output only if
the function does not converge.

options.MaxFunEvals Maximum number of function
evaluations before optimization
ceases. The default is 104.
Reducing this value might make
the function faster but might
reduce the quality of the fit.

options.MaxIter Maximum number of iterations
before optimization ceases. The
default is 104. Reducing this
value might make the function
faster but might reduce the
quality of the fit.

options.TolFun Termination tolerance on the
closed-form function used to
generate the fit. The default is
10-4.

options.TolX Termination tolerance on
the coefficient values of the
closed-form function used to
generate the fit. The default is
10-4.

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)
specifies which closed-form function berfit uses to fit the empirical
data, from the possible fits listed in Algorithm on page 43 below.
fittype can be 'exp', 'exp+const', 'polyRatio', or 'doubleExp+const'. To
avoid overriding default optimization options, use options = [].

15-38

berfit

[fitber,fitprops] = berfit(...) returns the MATLAB structure
fitprops, which describes the results of the curve fit. Its fields are
described in the table below.

Field Description

fitprops.fitType The closed-form function
type used to generate the fit:
'exp', 'exp+const', 'polyRatio',
'doubleExp+const', or 'all'.

fitprops.coeffs The coefficients used to generate
the fit.

fitprops.sumSqErr The sum squared error between
the log of the fitted BER points
and the log of the empirical BER
points.

fitprops.exitState The exit condition of berfit:
'The curve fit converged
to a solution.' or 'The
maximum number of function
evaluations was exceeded.'.

fitprops.funcCount The number of function
evaluations used in minimizing
the sum squared error function.

fitprops.iterations The number of iterations taken
in minimizing the sum squared
error function. This is not
necessarily equal to the number
of function evaluations.

berfit(...) plots the empirical and fitted BER data.

berfit(empEbNo,empber,fitEbNo,options,'all') plots the empirical
and fitted BER data from all the possible fits listed in Algorithm on
page 43 below. To avoid overriding default options, use options = [].

15-39

berfit

Examples The examples below illustrate the syntax of the function, but use
hard-coded or theoretical BER data for simplicity. For an example that
uses empirical BER data from a simulation, see “Example: Curve
Fitting for an Error Rate Plot” on page 3-14.

The code below plots the best fit for a sample set of data.

EbNo = [0:13];
berdata = [.2 .15 .13 .12 .08 .09 .08 .07 .06 .04 .03 .02 .01 .004];
berfit(EbNo,berdata); % Plot the best fit.

The curve connects the points created by evaluating the fit expression at
the values in EbNo. To make the curve look smoother, use a syntax like
berfit(EbNo,berdata,[0:0.2:13]). This alternative syntax uses more
points when plotting the curve, but does not change the fit expression.

The next example plots all fit types that berfit considers, for a
perturbation of a set of BER data obtained using the berfading
function. Notice that one of the fit types does not work well for this
data, while the other fit types provide much better fits.

15-40

berfit

M = 4; EbNo = [3:10];

berdata = berfading(EbNo,'psk',M,2); % Compute theoretical BER.

noisydata = berdata.*[.93 .92 .5 .89 .058 .35 .8 .01]; % Perturbed data

figure; berfit(EbNo,noisydata,EbNo,[],'all'); % Plot all four fits.

The code below illustrates the use of the options input structure as well
as the fitprops output structure. The 'notify' value for the display
level causes the function to produce output when one of the attempted
fits does not converge. The exitState field of the output structure also
indicates which fit converges and which fit does not.

M = 4; EbNo = [3:10];
berdata = berfading(EbNo,'psk',M,2); % Compute theoretical BER.
noisydata = berdata.*[.93 .92 .5 .89 .058 .35 .8 .01];
% Say when fit fails to converge.
options = optimset('display','notify');

disp('*** Trying polynomial ratio fit.') % Poor fit in this case
[fitber1,fitprops1] = berfit(EbNo,noisydata,EbNo,...

options,'polyRatio')

15-41

berfit

disp('*** Trying double exponential + constant fit.') % Good fit
[fitber2,fitprops2] = berfit(EbNo,noisydata,EbNo,...

options,'doubleExp+const')

The output is below.

*** Trying polynomial ratio fit.

Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
Current function value: 6.136681

fitber1 =

Columns 1 through 6

0.0472 0.0289 0.0187 0.0121 0.0077 0.0044

Columns 7 through 8

0.0019 0.0001

fitprops1 =

fitType: 'polyRatio'
coeffs: [6x1 double]

sumSqErr: 6.1367
exitState: [1x56 char]
funcCount: 10001

iterations: 3333

*** Trying double exponential + constant fit.

fitber2 =

15-42

berfit

Columns 1 through 6

0.0338 0.0260 0.0192 0.0134 0.0087 0.0049

Columns 7 through 8

0.0021 0.0001

fitprops2 =

fitType: 'doubleExp+const'
coeffs: [9x1 double]

sumSqErr: 6.7044
exitState: 'The curve fit converged to a solution.'
funcCount: 1237

iterations: 822

Algorithm The berfit function fits the BER data using unconstrained nonlinear
optimization via the fminsearch function. The closed-form functions
that berfit considers are listed in the table below, where x is the
Eb/N0 in linear terms (not dB) and f is the estimated BER. These
functions were empirically found to provide close fits in a wide variety
of situations, including exponentially decaying BERs, linearly varying
BERs, and BER curves with error rate floors.

Value of fittype Functional Expression

'exp'

f x a x a a a() exp{ [() /] }= − −1 2 3
4

'exp+const'

f x a x a a aa() exp{ [() /] }= − − +1 2 3 5
4

15-43

berfit

Value of fittype Functional Expression

'polyRatio'

f x
a x a x a

x a x a x a
() =

+ +

+ + +
1

2
2 3

3
4

2
5 6

'doubleExp+const'

a x a a a x a a a
a a

1 2 3 4 5 6 7 8 9exp{ / } exp{ / }− −()  + − −()  +

The sum squared error function that fminsearch attempts to minimize
is

F = −∑[log() log()]empirical BER fitted BER 2

where the fitted BER points are the values in empber and where the
sum is over the Eb/N0 points given in empEbNo. It is important to use
the log of the BER values rather than the BER values themselves
so that the high-BER regions do not dominate the objective function
inappropriately.

See Also fminsearch, optimset, Chapter 3, “Performance Evaluation”

References For a general description of unconstrained nonlinear optimization, see
the following work.

[1] Chapra, Steven C., and Raymond P. Canale, Numerical Methods for
Engineers, Fourth Edition, New York, McGraw-Hill, 2002.

15-44

bersync

Purpose Bit error rate (BER) for imperfect synchronization

Syntax ber = bersync(EbNo,timerr,'timing')
ber = bersync(EbNo,phaserr,'carrier')

Graphical
Interface

As an alternative to the bersync function, invoke the BERTool GUI
(bertool) and use the Theoretical panel.

Description ber = bersync(EbNo,timerr,'timing') returns the BER of uncoded
coherent binary phase shift keying (BPSK) modulation over an additive
white Gaussian noise (AWGN) channel with imperfect timing. The
normalized timing error is assumed to have a Gaussian distribution.
EbNo is the ratio of bit energy to noise power spectral density, in dB.
If EbNo is a vector, then the output ber is a vector of the same size,
whose elements correspond to the different Eb/N0 levels. timerr is
the standard deviation of the timing error, normalized to the symbol
interval. timerr must be between 0 and 0.5.

ber = bersync(EbNo,phaserr,'carrier') returns the BER of uncoded
BPSK modulation over an AWGN channel with a noisy phase reference.
The phase error is assumed to have a Gaussian distribution. phaserr
is the standard deviation of the error in the reference carrier phase,
in radians.

Examples The code below computes the BER of coherent BPSK modulation over
an AWGN channel with imperfect timing. The example varies both EbNo
and timerr. (When timerr assumes the final value of zero, the bersync
command produces the same result as berawgn(EbNo,'psk',2).)

EbNo = [4 8 12];
timerr = [0.2 0.07 0];
ber = zeros(length(timerr), length(EbNo));
for ii = 1:length(timerr)

ber(ii,:) = bersync(EbNo, timerr(ii),'timerr');
end
% Display result using scientific notation.
format short e; ber

15-45

bersync

format; % Switch back to default notation format.

The output is below, where each row corresponds to a different value of
timerr and each column corresponds to a different value of EbNo.

ber =

5.2073e-002 2.0536e-002 1.1160e-002
1.8948e-002 7.9757e-004 4.9008e-006
1.2501e-002 1.9091e-004 9.0060e-009

Limitations The numerical accuracy of this function’s output is limited by

• Approximations in the analysis leading to the closed-form expressions
that the function uses

• Approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output.

Limitations Related to Extreme Values of Input Arguments

Inherent limitations in numerical precision force the function to assume
perfect synchronization if the value of timerr or phaserr is very small.
The table below indicates how the function behaves under these
conditions.

Condition Behavior of Function

timerr < eps bersync(EbNo,timerr,'timing') defined
as berawgn(EbNo,'psk',2)

phaserr < eps bersync(EbNo,phaserr,'carrier')
defined as berawgn(EbNo,'psk',2)

15-46

bersync

Algorithm This function uses formulas from [3].

When the last input is 'timing', the function computes

1
4 2 2

1
2 2 2

2

2

2

2 1 2

2

πσ
ξ
σ

ξ
πξ

exp() exp() exp()
()

− − + −
−∞

∞

−

∞
∫ ∫ x

dxd
x

dx
R 22R

∞
∫

where σ is the timerr input and R is the value of EbNo converted from
dB to a linear scale.

When the last input is 'carrier', the function computes

1

2 2

2

20

2

2πσ
φ
σ

φ
φ

exp() exp()
cos

− −
∞ ∞

∫ ∫ y
dyd

R

where σ is the phaserr input and R is the value of EbNo converted from
dB to a linear scale.

See Also berawgn, bercoding, berfading, “Theoretical Performance Results”
on page 3-9

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.

[2] Sklar, Bernard, Digital Communications: Fundamentals and
Applications, Second Edition, Upper Saddle River, N.J., Prentice-Hall,
2001.

[3] Stiffler, J. J., Theory of Synchronous Communications, Englewood
Cliffs, N.J., Prentice-Hall, 1971.

15-47

bertool

Purpose Open the bit error rate analysis GUI (BERTool)

Syntax bertool
h = bertool

Description bertool launches the Bit Error Rate Analysis Tool (BERTool).
BERTool is a Graphical User Interface (GUI) that enables you to
analyze communications links’ BER performance via simulation-based,
semianalytic, or theoretical approach. To learn about BERTool, see
Chapter 4, “BERTool: A Bit Error Rate Analysis GUI”.

h = bertool returns the handle of the Java object.

15-48

bi2de

Purpose Convert binary vectors to decimal numbers

Syntax d = bi2de(b)
d = bi2de(b,flg)
d = bi2de(b,p)
d = bi2de(b,p,flg)

Description d = bi2de(b) converts a binary row vector b to a nonnegative decimal
integer. If b is a matrix, then each row is interpreted separately as
a binary number. In this case, the output d is a column vector, each
element of which is the decimal representation of the corresponding
row of b.

Note By default, bi2de interprets the first column of b as the
lowest-order digit.

d = bi2de(b,flg) is the same as the syntax above, except that flg
is a string that determines whether the first column of b contains
the lowest-order or highest-order digits. Possible values for flg are
'right-msb' and 'left-msb'. The value 'right-msb' produces the default
behavior.

d = bi2de(b,p) converts a base-p row vector b to a nonnegative
decimal integer , where p is an integer greater than or equal to 2.
The first column of b is the lowest base-p digit. If b is a matrix, then
the output d is a nonnegative decimal vector, each row of which is the
decimal form of the corresponding row of b.

d = bi2de(b,p,flg) is the same as the syntax above, except that flg
is a string that determines whether the first column of b contains
the lowest-order or highest-order digits. Possible values for flg are
'right-msb' and 'left-msb'. The value 'right-msb' produces the default
behavior.

15-49

bi2de

Examples The code below generates a matrix that contains binary representations
of five random numbers between 0 and 15. It then converts all five
numbers to decimal integers.

b = randint(5,4); % Generate a 5-by-4 random binary matrix.
de = bi2de(b);
disp(' Dec Binary')
disp(' ----- -------------------')
disp([de, b])

Sample output is below. Your results might vary because the numbers
are random.

Dec Binary
----- -------------------
13 1 0 1 1
7 1 1 1 0

15 1 1 1 1
4 0 0 1 0
9 1 0 0 1

The command below converts a base-five number into its decimal
counterpart, using the leftmost base-five digit (4 in this case)
as the most significant digit. The example reflects the fact that
4(53) + 2(52) +50 = 551.

d = bi2de([4 2 0 1],5,'left-msb')

The output is

d =

551

See Also de2bi

15-50

biterr

Purpose Compute number of bit errors and bit error rate

Syntax [number,ratio] = biterr(x,y)
[number,ratio] = biterr(x,y,k)
[number,ratio] = biterr(x,y,k,flg)
[number,ratio,individual] = biterr(...)

Description For All Syntaxes

The biterr function compares unsigned binary representations of
elements in x with those in y. The schematics below illustrate how the
shapes of x and y determine which elements biterr compares.

Each element of x and y must be a nonnegative decimal integer; biterr
converts each element into its natural unsigned binary representation.
number is a scalar or vector that indicates the number of bits that
differ. ratio is number divided by the total number of bits. The total
number of bits, the size of number, and the elements that biterr
compares are determined by the dimensions of x and y and by the
optional parameters.

For Specific Syntaxes

[number,ratio] = biterr(x,y) compares the elements in x and y.
If the largest among all elements of x and y has exactly k bits in
its simplest binary representation, then the total number of bits is k
times the number of entries in the smaller input. The sizes of x and y
determine which elements are compared:

15-51

biterr

• If x and y are matrices of the same dimensions, then biterr compares
x and y element by element. number is a scalar. See schematic (a)
in the figure.

• If one is a row (respectively, column) vector and the other is a
two-dimensional matrix, then biterr compares the vector element
by element with each row (resp., column) of the matrix. The length
of the vector must equal the number of columns (resp., rows) in the
matrix. number is a column (resp., row) vector whose mth entry
indicates the number of bits that differ when comparing the vector
with the mth row (resp., column) of the matrix. See schematics (b)
and (c) in the figure.

[number,ratio] = biterr(x,y,k) is the same as the first syntax,
except that it considers each entry in x and y to have k bits. The total
number of bits is k times the number of entries of the smaller of x and
y. An error occurs if the binary representation of an element of x or y
would require more than k digits.

[number,ratio] = biterr(x,y,k,flg) is similar to the previous
syntaxes, except that flg can override the defaults that govern which
elements biterr compares and how biterr computes the outputs. The
possible values of flg are 'row-wise', 'column-wise', and 'overall'.
The table below describes the differences that result from various
combinations of inputs. As always, ratio is number divided by the total
number of bits. If you do not provide k as an input argument, then
the function defines it internally as the number of bits in the simplest
binary representation of the largest among all elements of x and y.

15-52

biterr

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of
Comparison

number Total
Number
of Bits

'overall'
(default)

Element by
element

Total
number
of bit
errors

k times
number of
entries of y

'row-wise' mth row of x
vs. mth row
of y

Column
vector
whose
entries
count bit
errors in
each row

k times
number of
entries of y

Two-dim.
matrix

'column-wise' mth column
of x vs. mth
column of y

Row
vector
whose
entries
count bit
errors
in each
column

k times
number of
entries of y

15-53

biterr

Shape of y flg Type of
Comparison

number Total
Number
of Bits

'overall' y vs. each
row of x

Total
number
of bit
errors

k times
number of
entries of x

Row vector

'row-wise'
(default)

y vs. each
row of x

Column
vector
whose
entries
count bit
errors in
each row
of x

k times size
of y

'overall' y vs. each
column of x

Total
number
of bit
errors

k times
number of
entries of x

Column
vector

'column-wise'
(default)

y vs. each
column of x

Row
vector
whose
entries
count bit
errors
in each
column of
x

k times size
of y

[number,ratio,individual] = biterr(...) returns a matrix
individual whose dimensions are those of the larger of x and y. Each
entry of individual corresponds to a comparison between a pair of
elements of x and y, and specifies the number of bits by which the
elements in the pair differ.

15-54

biterr

Examples Example 1

The commands below compare the column vector [0; 0; 0] to each column
of a random binary matrix. The output is the number, proportion, and
locations of 1s in the matrix. In this case, individual is the same as
the random matrix.

format rat;
[number,ratio,individual] = biterr([0;0;0],randint(3,5))

The output is

number =

2 0 0 3 1

ratio =

2/3 0 0 1 1/3

individual =

1 0 0 1 0
1 0 0 1 0
0 0 0 1 1

Example 2

The commands below illustrate the use of flg to override the default
row-by-row comparison. Notice that number and ratio are scalars,
while individual has the same dimensions as the larger of the first
two arguments of biterr.

format rat;
[number2,ratio2,individual2] = biterr([1 2; 3 4],[1 3],3,'overall')

The output is

15-55

biterr

number =

5

ratio =

5/12

individual =

0 1
1 3

Example 3

The script below adds errors to 10% of the elements in a matrix. Each
entry in the matrix is a two-bit number in decimal form. The script
computes the bit error rate using biterr and the symbol error rate
using symerr.

x = randint(100,100,4); % Original signal
% Create errors to add to ten percent of the elements of x.
% Errors can be either 1, 2, or 3 (not zero).
errorplace = (rand(100,100) > .9); % Where to put errors
errorvalue = randint(100,100,[1,3]); % Value of the errors
errors = errorplace.*errorvalue;
y = rem(x+errors,4); % Signal with errors added, mod 4
format short
[num_bit,ratio_bit] = biterr(x,y,2)
[num_sym,ratio_sym] = symerr(x,y)

Sample output is below. Notice that ratio_sym is close to the target
value of 0.10. Your results might vary because the example uses
random numbers.

15-56

biterr

num_bit =

1304

ratio_bit =

0.0652

num_sym =

981

ratio_sym =

0.0981

See Also symerr, “Performance Results via Simulation” on page 3-2

15-57

bsc

Purpose Model a binary symmetric channel

Syntax ndata = bsc(data,p)
ndata = bsc(data,p,state)
[ndata,err] = bsc(...)

Description ndata = bsc(data,p) passes the binary input signal data through
a binary symmetric channel with error probability p. The channel
introduces a bit error with probability p, processing each element of
data independently. data must be an array of binary numbers or a
Galois array in GF(2). p must be a scalar between 0 and 1.

ndata = bsc(data,p,state) resets the state of the uniform random
number generator rand to the integer state.

[ndata,err] = bsc(...) returns an array, err, containing the channel
errors.

Examples To introduce bit errors in the bits in a random matrix with probability
0.15, use the bsc function as below.

z = randint(100,100); % Random matrix

nz = bsc(z,.15); % Binary symmetric channel

[numerrs, pcterrs] = biterr(z,nz) % Number and percentage of errors

The output below is typical. Note that the percentage of bit errors is
not exactly 15% in most trials, but it is close to 15% if the size of the
matrix z is large.

numerrs =

1509

pcterrs =

0.1509

15-58

bsc

Another example using this function is in “Binary Symmetric Channel”
on page 10-24.

See Also rand, awgn, “Binary Symmetric Channel” on page 10-24

15-59

cma

Purpose Construct a constant modulus algorithm (CMA) object

Syntax alg = cma(stepsize)
alg = cma(stepsize,leakagefactor)

Description The cma function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing
a signal, see “Using Adaptive Equalizer Functions and Objects” on
page 11-8.

Note After you use either lineareq or dfe to create a CMA equalizer
object, you should initialize the equalizer object’s Weights property with
a nonzero vector. Typically, CMA is used with differential modulation;
otherwise, the initial weights are very important. A typical vector
of initial weights has a 1 corresponding to the center tap and zeros
elsewhere.

alg = cma(stepsize) constructs an adaptive algorithm object based on
the constant modulus algorithm (CMA) with a step size of stepsize.

alg = cma(stepsize,leakagefactor) sets the leakage factor of
the CMA. leakagefactor must be between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, while a value of
0 corresponds to a memoryless update algorithm.

Properties

The table below describes the properties of the CMA adaptive algorithm
object. To learn how to view or change the values of an adaptive
algorithm object, see “Accessing Properties of an Adaptive Algorithm”
on page 11-12.

15-60

cma

Property Description

AlgType Fixed value, 'Constant Modulus'

StepSize CMA step size parameter, a
nonnegative real number

LeakageFactor CMA leakage factor, a real
number between 0 and 1

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes” on page 11-3, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set
of weights, w, this adaptive algorithm creates the new set of weights
given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

See Also lms, signlms, normlms, varlms, rls, lineareq, dfe, equalize, Chapter
11, “Equalizers”

References [1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[2] Johnson, Richard C., Jr., Philip Schniter, Thomas. J. Endres, et al.,
“Blind Equalization Using the Constant Modulus Criterion: A Review,”
Proceedings of the IEEE, vol. 86, pp. 1927-1950, October 1998.

15-61

compand

Purpose Source code mu-law or A-law compressor or expander

Syntax out = compand(in,param,v)
out = compand(in,Mu,v,'mu/compressor')
out = compand(in,Mu,v,'mu/expander')
out = compand(in,A,v,'A/compressor')
out = compand(in,A,v,'A/expander')

Description out = compand(in,param,v) implements a µ-law compressor for the
input vector in. Mu specifies µ and v is the input signal’s maximum
magnitude. out has the same dimensions and maximum magnitude as
in.

out = compand(in,Mu,v,'mu/compressor') is the same as the syntax
above.

out = compand(in,Mu,v,'mu/expander') implements a µ-law expander
for the input vector in. Mu specifies µ and v is the input signal’s
maximum magnitude. out has the same dimensions and maximum
magnitude as in.

out = compand(in,A,v,'A/compressor') implements an A-law
compressor for the input vector in. The scalar A is the A-law parameter,
and v is the input signal’s maximum magnitude. out is a vector of the
same length and maximum magnitude as in.

out = compand(in,A,v,'A/expander') implements an A-law expander
for the input vector in. The scalar A is the A-law parameter, and v is the
input signal’s maximum magnitude. out is a vector of the same length
and maximum magnitude as in.

Note The prevailing parameters used in practice are µ= 255 and
A = 87.6.

Examples The examples below illustrate the fact that compressors and expanders
perform inverse operations.

15-62

compand

compressed = compand(1:5,87.6,5,'a/compressor')
expanded = compand(compressed,87.6,5,'a/expander')

The output is

compressed =

3.5296 4.1629 4.5333 4.7961 5.0000

expanded =

1.0000 2.0000 3.0000 4.0000 5.0000

Algorithm For a given signal x, the output of the µ-law compressor is

where V is the maximum value of the signal x, µ is the µ-law parameter
of the compander, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB).

The output of the A-law compressor is

where A is the A-law parameter of the compander and the other
elements are as in the µ-law case.

See Also quantiz, dpcmenco, dpcmdeco, “Companding a Signal” on page 5-12

15-63

compand

References [1] Sklar, Bernard, Digital Communications: Fundamentals and
Applications, Englewood Cliffs, N.J., Prentice-Hall, 1988.

15-64

convdeintrlv

Purpose Restore ordering of symbols using shift registers

Syntax deintrlved = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state)

Description deintrlved = convdeintrlv(data,nrows,slope) restores the ordering
of elements in data by using a set of nrows internal shift registers. The
delay value of the kth shift register is (nrows-k)*slope, where k = 1, 2,
3,..., nrows. Before the function begins to process data, it initializes all
shift registers with zeros. If data is a matrix with multiple rows and
columns, then the function processes the columns independently.

[deintrlved,state] = convdeintrlv(data,nrows,slope) returns a
structure that holds the final state of the shift registers. state.value
stores any unshifted symbols. state.index is the index of the next
register to be shifted.

[deintrlved,state] =
convdeintrlv(data,nrows,slope,init_state)
initializes the shift registers with the symbols contained in
init_state.value and directs the first input symbol to the shift
register referenced by init_state.index. The structure init_state is
typically the state output from a previous call to this same function,
and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the convintrlv function, use the
same nrows and slope inputs in both functions. In that case, the two
functions are inverses in the sense that applying convintrlv followed
by convdeintrlv leaves data unchanged, after you take their combined
delay of nrows*(nrows-1)*slope into account. To learn more about
delays of convolutional interleavers, see “Delays of Convolutional
Interleavers” on page 7-9.

Examples The example in “Effect of Delays on Recovery of Convolutionally
Interleaved Data” on page 7-10 uses convdeintrlv and illustrates how

15-65

convdeintrlv

you can handle the delay of the interleaver/deinterleaver pair when
recovering data.

The example on the reference page for muxdeintrlv illustrates how to
use the state output and init_state input with that function; the
process is analogous for this function.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also convintrlv, muxdeintrlv, Chapter 7, “Interleaving”

15-66

convenc

Purpose Convolutionally encode binary data

Syntax code = convenc(msg,trellis)
code = convenc(msg,trellis,init_state)
[code,final_state] = convenc(...)

Description code = convenc(msg,trellis) encodes the binary vector msg using
the convolutional encoder whose MATLAB trellis structure is trellis.
For details about MATLAB trellis structures, see “Trellis Description of
a Convolutional Encoder” on page 6-34. Each symbol in msg consists of
log2(trellis.numInputSymbols) bits. The vector msg contains one or
more symbols. The output vector code contains one or more symbols,
each of which consists of log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,init_state) is the same as the syntax
above, except that init_state specifies the starting state of the
encoder registers. The scalar init_state is an integer between 0
and trellis.numStates-1. If the encoder schematic has more than
one input stream, then the shift register that receives the first input
stream provides the least significant bits in init_state, while the
shift register that receives the last input stream provides the most
significant bits in init_state. To use the default value for init_state,
specify init_state as 0 or [].

[code,final_state] = convenc(...) encodes the input message
and also returns in final_state the encoder’s state. final_state has
the same format as init_state.

Examples The command below encodes five two-bit symbols using a rate 2/3
convolutional code. A schematic of this encoder is on the reference
page for the poly2trellis function.

code1 = convenc(randint(10,1,2,123),...
poly2trellis([5 4],[23 35 0; 0 5 13]));

The commands below define the encoder’s trellis structure explicitly
and then use convenc to encode ten one-bit symbols. A schematic of

15-67

convenc

this encoder is in “Trellis Description of a Convolutional Encoder” on
page 6-34.

trel = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);
code2 = convenc(randint(10,1),trel);

The commands below illustrate how to use the final state and initial
state arguments when invoking convenc repeatedly. Notice that
[code3; code4] is the same as the earlier example’s output, code1.

trel = poly2trellis([5 4],[23 35 0; 0 5 13]);
msg = randint(10,1,2,123);
% Encode part of msg, recording final state for later use.
[code3,fstate] = convenc(msg(1:6),trel);
% Encode the rest of msg, using state as an input argument.
code4 = convenc(msg(7:10),trel,fstate);

See Also vitdec, poly2trellis, istrellis, vitsimdemo, “Convolutional Coding”
on page 6-30

References [1] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein,
Data Communications Principles, New York, Plenum, 1992.

15-68

convintrlv

Purpose Permute symbols using shift registers

Syntax intrlved = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope,init_state)

Description intrlved = convintrlv(data,nrows,slope) permutes the elements in
data by using a set of nrows internal shift registers. The delay value of
the kth shift register is (k-1)*slope, where k = 1, 2, 3,... nrows. Before
the function begins to process data, it initializes all shift registers with
zeros. If data is a matrix with multiple rows and columns, then the
function processes the columns independently.

[intrlved,state] = convintrlv(data,nrows,slope) returns a
structure that holds the final state of the shift registers. state.value
stores any unshifted symbols. state.index is the index of the next
register to be shifted.

[intrlved,state] = convintrlv(data,nrows,slope,init_state)
initializes the shift registers with the symbols contained in
init_state.value and directs the first input symbol to the shift
register referenced by init_state.index. The structure init_state is
typically the state output from a previous call to this same function,
and is unrelated to the corresponding deinterleaver.

Examples The example below shows that convintrlv is a special case of the more
general function muxintrlv. Both functions yield the same numerical
results.

x = randint(100,1); % Original data
nrows = 5; % Use 5 shift registers
slope = 3; % Delays are 0, 3, 6, 9, and 12.
y = convintrlv(x,nrows,slope); % Interleaving using convintrlv.
delay = [0:3:12]; % Another way to express set of delays
y1 = muxintrlv(x,delay); % Interleave using muxintrlv.
isequal(y,y1)

15-69

convintrlv

The output below shows that y, obtained using convintrlv, and y1,
obtained using muxintrlv, are the same.

ans =

1

Another example using this function is in “Effect of Delays on Recovery
of Convolutionally Interleaved Data” on page 7-10.

The example on the reference page for muxdeintrlv illustrates how to
use the state output and init_state input with that function; the
process is analogous for this function.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also convdeintrlv, muxintrlv, helintrlv, Chapter 7, “Interleaving”

15-70

convmtx

Purpose Convolution matrix of Galois field vector

Syntax A = convmtx(c,n)

Description A convolution matrix is a matrix, formed from a vector, whose inner
product with another vector is the convolution of the two vectors.

A = convmtx(c,n) returns a convolution matrix for the Galois vector
c. The output A is a Galois array that represents convolution with c in
the sense that conv(c,x) equals

• A*x, if c is a column vector and x is any Galois column vector of
length n. In this case, A has n columns and m+n-1 rows.

• x*A, if c is a row vector and x is any Galois row vector of length n. In
this case, A has n rows and m+n-1 columns.

Examples The code below illustrates the equivalence between using the conv
function and multiplying by the output of convmtx.

m = 4;
c = gf([1; 9; 3],m); % Column vector
n = 6;
x = gf(randint(n,1,2^m),m);
ck1 = isequal(conv(c,x), convmtx(c,n)*x) % True
ck2 = isequal(conv(c',x'),x'*convmtx(c',n)) % True

The output is

ck1 =

1

ck2 =

1

15-71

convmtx

See Also conv, “Signal Processing Operations in Galois Fields” on page 12-27

15-72

cosets

Purpose Produce cyclotomic cosets for a Galois field

Syntax cst = cosets(m)

Description cst = cosets(m) produces cyclotomic cosets mod 2^m-1. Each element
of the cell array cst is a Galois array that represents one cyclotomic
coset.

A cyclotomic coset is a set of elements that share the same minimal
polynomial. Together, the cyclotomic cosets mod 2^m-1 form a partition
of the group of nonzero elements of GF(2^m). For more details on
cyclotomic cosets, see the works listed in References on page 74 below.

Examples The commands below find and display the cyclotomic cosets for GF(8).
As an example of interpreting the results, c{2} indicates that A, A2, and
A2 + A share the same minimal polynomial, where A is a primitive
element for GF(8).

c = cosets(3);
c{1}'
c{2}'
c{3}'

The output is below.

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

2 4 6

15-73

cosets

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

3 5 7

See Also minpol

References [1] Blahut, Richard E., Theory and Practice of Error Control Codes,
Reading, Mass., Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Englewood Cliffs, N.J., Prentice-Hall,
1983.

15-74

cyclgen

Purpose Produce parity-check and generator matrices for cyclic code

Syntax h = cyclgen(n,pol)
h = cyclgen(n,pol,opt)
[h,g] = cyclgen(...)
[h,g,k] = cyclgen(...)

Description For all syntaxes, the codeword length is n and the message length is
k. A polynomial can generate a cyclic code with codeword length n and
message length k if and only if the polynomial is a degree-(n-k) divisor
of x^n-1. (Over the binary field GF(2), x^n-1 is the same as x^n+1.) This
implies that k equals n minus the degree of the generator polynomial.

h = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a
systematic binary cyclic code having codeword length n. The row vector
pol gives the binary coefficients, in order of ascending powers, of the
degree-(n-k) generator polynomial.

h = cyclgen(n,pol,opt) is the same as the syntax above, except that
the argument opt determines whether the matrix should be associated
with a systematic or nonsystematic code. The values for opt are 'system'
and 'nonsys'.

[h,g] = cyclgen(...) is the same as h = cyclgen(...) except
that it also produces the k-by-n generator matrix g that corresponds to
the parity-check matrix h.

[h,g,k] = cyclgen(...) is the same as [h,g] = cyclgen(...)
except that it also returns the message length k.

Examples The code below produces parity-check and generator matrices for a
binary cyclic code with codeword length 7 and message length 4.

pol = cyclpoly(7,4);
[parmat,genmat,k] = cyclgen(7,pol)

The output is

15-75

cyclgen

parmat =

1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

genmat =

1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1

k =

4

In the output below, notice that the parity-check matrix is different
from parmat above, because it corresponds to a nonsystematic cyclic
code. In particular, parmatn does not have a 3-by-3 identity matrix in
its leftmost three columns, as parmat does.

parmatn = cyclgen(7,cyclpoly(7,4),'nonsys')
parmatn =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

See Also encode, decode, bchgenpoly, cyclpoly, “Block Coding” on page 6-2

15-76

cyclpoly

Purpose Produce generator polynomials for a cyclic code

Syntax pol = cyclpoly(n,k)
pol = cyclpoly(n,k,opt)

Description For all syntaxes, a polynomial is represented as a row containing the
coefficients in order of ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one
nontrivial generator polynomial for a cyclic code having codeword
length n and message length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial
generator polynomials for cyclic codes having codeword length n and
message length k. The output pol depends on the argument opt as
shown in the table below.

opt Significance of pol Format of pol

'min' One generator
polynomial having
the smallest possible
weight

The row vector
representing the
polynomial

'max' One generator
polynomial having
the greatest possible
weight

The row vector
representing the
polynomial

'all' All generator
polynomials

A matrix, each row of
which represents one
such polynomial

a positive integer, L All generator
polynomials having
weight L

A matrix, each row of
which represents one
such polynomial

The weight of a binary polynomial is the number of nonzero terms it
has. If no generator polynomial satisfies the given conditions, then the
output pol is empty and an error message is displayed.

15-77

cyclpoly

Examples The first command below produces representations of three generator
polynomials for a [15,4] cyclic code. The second command shows that
1 + x + x2 + x3+ x5+ x7+ x8+ x11 is one such polynomial having the largest
number of nonzero terms.

c1 = cyclpoly(15,4,'all')
c2 = cyclpoly(15,4,'max')

The output is

c1 =

Columns 1 through 10

1 1 0 0 0 1 1 0 0 0
1 0 0 1 1 0 1 0 1 1
1 1 1 1 0 1 0 1 1 0

Columns 11 through 12

1 1
1 1
0 1

c2 =

Columns 1 through 10

1 1 1 1 0 1 0 1 1 0

Columns 11 through 12

0 1

This command shows that no generator polynomial for a [15,4] cyclic
code has exactly three nonzero terms.

15-78

cyclpoly

c3 = cyclpoly(15,4,3)

No generator polynomial satisfies the given constraints.

c3 =

[]

Algorithm If opt is 'min', 'max', or omitted, then polynomials are constructed by
converting decimal integers to base p. Based on the decimal ordering,
gfprimfd returns the first polynomial it finds that satisfies the
appropriate conditions. This algorithm is similar to the one used in
gfprimfd.

See Also cyclgen, encode, “Block Coding” on page 6-2

15-79

de2bi

Purpose Convert decimal numbers to binary vectors

Syntax b = de2bi(d)
b = de2bi(d,n)
b = de2bi(d,n,p)
b = de2bi(d,[],p)
b = de2bi(d,...,flg)

Description b = de2bi(d) converts a nonnegative decimal integer d to a binary row
vector. If d is a vector, then the output b is a matrix, each row of which
is the binary form of the corresponding element in d. If d is a matrix,
then de2bi treats it like the vector d(:).

Note By default, de2bi uses the first column of b as the lowest-order
digit.

b = de2bi(d,n) is the same as b = de2bi(d), except that its output
has n columns, where n is a positive integer. An error occurs if the
binary representations would require more than n digits. If necessary,
the binary representation of d is padded with extra zeros.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a base-p
row vector, where p is an integer greater than or equal to 2. The first
column of b is the lowest base-p digit. b is padded with extra zeros if
necessary, so that it has n columns, where n is a positive integer. An
error occurs if the base-p representations would require more than
n digits. If d is a nonnegative decimal vector, then the output b is a
matrix, each row of which is the (possibly zero-padded) base-p form of
the corresponding element in d. If d is a matrix, then de2bi treats it
like the vector d(:).

b = de2bi(d,[],p) specifies the base p but not the number of columns.

b = de2bi(d,...,flg) uses the string flg to determine whether the
first column of b contains the lowest-order or highest-order digits.

15-80

de2bi

Values for flg are 'right-msb' and 'left-msb'. The value 'right-msb'
produces the default behavior.

Examples The code below counts to ten in decimal and binary.

d = (1:10)';
b = de2bi(d);
disp(' Dec Binary ')
disp(' ----- -------------------')
disp([d, b])

The output is below.

Dec Binary
----- -------------------

1 1 0 0 0
2 0 1 0 0
3 1 1 0 0
4 0 0 1 0
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0
8 0 0 0 1
9 1 0 0 1

10 0 1 0 1

The command below shows how de2bi pads its output with zeros.

bb = de2bi([3 9],5) % Zero-padding the output

bb =

1 1 0 0 0
1 0 0 1 0

The commands below show how to convert a decimal integer to base
three without specifying the number of columns in the output matrix.

15-81

de2bi

They also show how to place the most significant digit on the left
instead of on the right.

t = de2bi(12,[],3) % Convert 12 to base 3.

tleft = de2bi(12,[],3,'left-msb') % Significant digit on left

The output is

t =

0 1 1

tleft =

1 1 0

See Also bi2de

15-82

decode

Purpose Block decoder

Syntax msg = decode(code,n,k,'hamming/fmt',prim_poly)
msg = decode(code,n,k,'linear/fmt',genmat,trt)
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt)
msg = decode(code,n,k)
[msg,err] = decode(...)
[msg,err,ccode] = decode(...)
[msg,err,ccode,cerr] = decode(...)

Optional
Inputs

Input Default Value

fmt binary

prim_poly gfprimdf(m) where n = 2^m-1

genpoly cyclpoly(n,k)

trt Uses syndtable to create
the syndrome decoding table
associated with the method’s
parity-check matrix

Description For All Syntaxes

The decode function aims to recover messages that were encoded using
an error-correction coding technique. The technique and the defining
parameters must match those that were used to encode the original
signal.

The For All Syntaxes on page 107 section on the reference page for the
encode function explains the meanings of n and k, the possible values of
fmt, and the possible formats for code and msg. You should be familiar
with the conventions described there before reading the rest of this
section. Using the decode function with an input argument code that
was not created by the encode function might cause errors.

15-83

decode

For Specific Syntaxes

msg = decode(code,n,k,'hamming/fmt',prim_poly) decodes code
using the Hamming method. For this syntax, n must have the form 2m-1
for some integer m greater than or equal to 3, and k must equal n-m.
prim_poly is a row vector that gives the binary coefficients, in order of
ascending powers, of the primitive polynomial for GF(2m) that is used in
the encoding process. The default value of prim_poly is gfprimdf(m).
The decoding table that the function uses to correct a single error in
each codeword is syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code,
which is a linear block code determined by the k-by-n generator matrix
genmat. genmat is required as input. decode tries to correct errors using
the decoding table trt, where trt is a 2^(n-k)-by-n matrix.

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the
cyclic code code and tries to correct errors using the decoding table trt,
where trt is a 2^(n-k)-by-n matrix. genpoly is a row vector that gives
the coefficients, in order of ascending powers, of the binary generator
polynomial of the code. The default value of genpoly is cyclpoly(n,k).
By definition, the generator polynomial for an [n,k] cyclic code must
have degree n-k and must divide xn-1.

msg = decode(code,n,k) is the same as
msg = decode(code,n,k,'hamming/binary').

[msg,err] = decode(...) returns a column vector err that gives
information about error correction. If the code is a convolutional code,
then err contains the metric calculations used in the decoding decision
process. For other types of codes, a nonnegative integer in the rth row
of err (or the rth row of vec2mat(err,k) if code is a column vector)
indicates the number of errors corrected in the rth message word; a
negative integer indicates that there are more errors in the rth word
than can be corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr
whose meaning depends on the format of code:

15-84

decode

• If code is a binary vector, then a nonnegative integer in the rth row
of vec2mat(cerr,n) indicates the number of errors corrected in the
rth codeword; a negative integer indicates that there are more errors
in the rth codeword than can be corrected.

• If code is not a binary vector, then cerr = err.

Examples On the reference page for encode, some of the example code illustrates
the use of the decode function.

The example below illustrates the use of err and cerr when the coding
method is not convolutional code and the code is a binary vector. The
script encodes two five-bit messages using a cyclic code. Each codeword
has fifteen bits. Errors are added to the first two bits of the first
codeword and the first bit of the second codeword. Then decode is used
to recover the original message. As a result, the errors are corrected.
err is the same size as msg and cerr is the same size as code. err
reflects the fact that the first message was recovered after correcting
two errors, while the second message was recovered after correcting one
error. cerr reflects the fact that the first codeword was decoded after
correcting two errors, while the second codeword was decoded after
correcting one error.

m = 4; n = 2^m-1; % Codeword length is 15.
k = 5; % Message length
msg = ones(10,1); % Two messages, five bits each
code = encode(msg,n,k,'cyclic'); % Encode the message.
% Now place two errors in first word and one error
% in the second word. Create errors by reversing bits.
noisycode = code;
noisycode(1:2) = bitxor(noisycode(1:2),[1 1]');
noisycode(16) = bitxor(noisycode(16),1);
% Decode and try to correct the errors.
[newmsg,err,ccode,cerr] = decode(noisycode,n,k,'cyclic');
disp('Transpose of err is'); disp(err')
disp('Transpose of cerr is'); disp(cerr')

The output is below.

15-85

decode

Single-error patterns loaded in decoding table.
1008 rows remaining.

2-error patterns loaded. 918 rows remaining.
3-error patterns loaded. 648 rows remaining.
4-error patterns loaded. 243 rows remaining.
5-error patterns loaded. 0 rows remaining.
Transpose of err is

2 2 2 2 2 1 1 1 1 1

Transpose of cerr is
Columns 1 through 10

2 2 2 2 2 2 2 2 2 2

Columns 11 through 20

2 2 2 2 2 1 1 1 1 1

Columns 21 through 30

1 1 1 1 1 1 1 1 1 1

Algorithm Depending on the decoding method, decode relies on such lower-level
functions as hammgen, syndtable, and cyclgen.

See Also encode, cyclpoly, syndtable, gen2par, “Block Coding” on page 6-2

15-86

deintrlv

Purpose Restore ordering of symbols

Syntax deintrlvd = deintrlv(data,elements)

Description deintrlvd = deintrlv(data,elements) restores the original ordering
of the elements of data by acting as an inverse of intrlv. If data is
a length-N vector or an N-row matrix, then elements is a length-N
vector that permutes the integers from 1 to N. To use this function as an
inverse of the intrlv function, use the same elements input in both
functions. In that case, the two functions are inverses in the sense that
applying intrlv followed by deintrlv leaves data unchanged.

Examples The code below illustrates the inverse relationship between intrlv
and deintrlv.

p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p); % Rearrange [10 20 30 ... 100].
b = deintrlv(a,p) % Deinterleave a to restore ordering.

The output is

b =

10 20 30 40 50 60 70 80 90 100

See Also intrlv, Chapter 7, “Interleaving”

15-87

dfe

Purpose Construct a decision feedback equalizer object

Syntax eqobj = dfe(nfwdweights,nfbkweights,alg)
eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst)
eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp)

Description The dfe function creates an equalizer object that you can use with the
equalize function to equalize a signal. To learn more about the process
for equalizing a signal, see “Using Adaptive Equalizer Functions and
Objects” on page 11-8.

eqobj = dfe(nfwdweights,nfbkweights,alg) constructs a decision
feedback equalizer object. The equalizer’s feedforward and feedback
filters have nfwdweights and nfbkweights symbol-spaced complex
weights, respectively, which are initially all zeros. alg describes the
adaptive algorithm that the equalizer uses; you should create alg using
any of these functions: lms, signlms, normlms, varlms, rls, or cma. The
signal constellation of the desired output is [-1 1], which corresponds
to binary phase shift keying (BPSK).

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst) specifies the
signal constellation vector of the desired output.

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp)
constructs a DFE with a fractionally spaced forward filter. The forward
filter has nfwdweights complex weights spaced at T/nsamp, where T is
the symbol period and nsamp is a positive integer. Note that nsamp = 1
corresponds to a symbol-spaced forward filter.

Properties

The table below describes the properties of the decision feedback
equalizer object. To learn how to view or change the values of a decision
feedback equalizer object, see “Accessing Properties of an Equalizer”
on page 11-14.

15-88

dfe

Note To initialize or reset the equalizer object eqobj, enter
reset(eqobj).

Property Description

EqType Fixed value, 'Decision Feedback
Equalizer'

AlgType Name of the adaptive algorithm
represented by alg

nWeights Number of weights in the forward
filter and the feedback filter,
in the format [nfwdweights,
nfbkweights]. The number of
weights in the forward filter must
be at least 1.

nSampPerSym Number of input samples per
symbol (equivalent to nsamp
input argument). This value
relates to both the equalizer
structure (See the use of K in
“Decision-Feedback Equalizers”
on page 11-6.) and an assumption
about the signal to be equalized.

RefTap (except for CMA
equalizers)

Reference tap index, between 1
and nfwdweights. Setting this to
a value greater than 1 effectively
delays the reference signal with
respect to the equalizer’s input
signal.

SigConst Signal constellation, a vector
whose length is typically a power
of 2.

15-89

dfe

Property Description

Weights Vector that concatenates the
complex coefficients from the
forward filter and the feedback
filter. This is the set of wi
values in the schematic in
“Decision-Feedback Equalizers”
on page 11-6.

WeightInputs Vector that concatenates the tap
weight inputs for the forward
filter and the feedback filter.
This is the set of ui values in the
schematic in “Decision-Feedback
Equalizers” on page 11-6.

ResetBeforeFiltering If 1, each call to equalize
resets the state of eqobj before
equalizing. If 0, the equalization
process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer
processed since the last reset.
When you create or reset eqobj,
this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the
adaptive algorithm function
that created alg: lms, signlms,
normlms, varlms, rls, or cma.

Relationships Among Properties

If you change nWeights, then MATLAB maintains consistency in the
equalizer object by adjusting the values of the properties listed below.

15-90

dfe

Property Adjusted Value

Weights zeros(1,sum(nWeights))

WeightInputs zeros(1,sum(nWeights))

StepSize
(Variable-step-size LMS
equalizers)

InitStep*ones(1,sum(nWeights))

InvCorrMatrix (RLS
equalizers)

InvCorrInit*eye(sum(nWeights))

An example illustrating relationships among properties is in “Linked
Properties of an Equalizer Object” on page 11-14.

Examples An example is in “Defining an Equalizer Object” on page 11-13.

See Also lms, signlms, normlms, varlms, rls, cma, lineareq, equalize, Chapter
11, “Equalizers”

15-91

dftmtx

Purpose Discrete Fourier transform matrix in a Galois field

Syntax dm = dftmtx(alph)

Description dm = dftmtx(alph) returns a Galois array that represents the discrete
Fourier transform operation on a Galois vector, with respect to the
Galois scalar alph. The element alph is a primitive nth root of unity
in the Galois field GF(2m) = GF(n+1); that is, n must be the smallest
positive value of k for which alph^k equals 1. The discrete Fourier
transform has size n and dm is an n-by-n array. The array dm represents
the transform in the sense that dm times any length-n Galois column
vector yields the transform of that vector.

Note The inverse discrete Fourier transform matrix is dftmtx(1/alph).

Examples The example below illustrates the discrete Fourier transform and its
inverse, with respect to the element gf(3,4). The example examines
the first n powers of that element to make sure that only the nth power
equals one. Afterward, the example transforms a random Galois vector,
undoes the transform, and checks the result.

m = 4;
n = 2^m-1;
a = 3;
alph = gf(a,m);
mp = minpol(alph);
if (mp(1)==1 && isprimitive(mp)) % Check that alph has order n.

disp('alph is a primitive nth root of unity.')
dm = dftmtx(alph);
idm = dftmtx(1/alph);
x = gf(randint(n,1,2^m),m);
y = dm*x; % Transform x.
z = idm*y; % Recover x.
ck = isequal(x,z)

end

15-92

dftmtx

The output is

alph is a primitive nth root of unity.

ck =

1

Limitations The Galois field over which this function works must have 256 or fewer
elements. In other words, alph must be a primitive nth root of unity in
the Galois field GF(2m), where m is an integer between 1 and 8.

Algorithm The element dm(a,b) equals alph^((a-1)*(b-1)).

See Also fft, ifft, “Signal Processing Operations in Galois Fields” on page 12-27

15-93

distspec

Purpose Compute the distance spectrum of a convolutional code

Syntax spect = distspec(trellis,n)
spect = distspec(trellis)

Description spect = distspec(trellis,n) computes the free distance and
the first n components of the weight and distance spectra of a
linear convolutional code. Because convolutional codes do not have
block boundaries, the weight spectrum and distance spectrum are
semi-infinite and are most often approximated by the first few
components. The input trellis is a valid MATLAB trellis structure, as
described in “Trellis Description of a Convolutional Encoder” on page
6-34. The output, spect, is a structure with these fields:

Field Meaning

spect.dfree Free distance of the code. This is
the minimum number of errors in
the encoded sequence required to
create an error event

spect.weight A length-n vector that lists the
total number of information
bit errors in the error events
enumerated in spect.event

spect.event A length-n vector that lists the
number of error events for each
distance between spect.dfree
and spect.dfree+n-1. The vector
represents the first n components
of the distance spectrum.

spect = distspec(trellis) is the same as spect =
distspec(trellis,1).

15-94

distspec

Examples The example below performs these tasks:

• Computes the distance spectrum for the rate 2/3 convolutional code
that is depicted on the reference page for the poly2trellis function

• Uses the output of distspec as an input to the bercoding function,
to find a theoretical upper bound on the bit error rate for a system
that uses this code with coherent BPSK modulation

• Plots the upper bound using the berfit function

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])
spect = distspec(trellis,4)
berub = bercoding(1:10,'conv','hard',2/3,spect); % BER bound
berfit(1:10,berub); ylabel('Upper Bound on BER'); % Plot.

The output and plot are below.

trellis =

numInputSymbols: 4
numOutputSymbols: 8

numStates: 128
nextStates: [128x4 double]

outputs: [128x4 double]

spect =

dfree: 5
weight: [1 6 28 142]
event: [1 2 8 25]

15-95

distspec

Algorithm The function uses a tree search algorithm implemented with a stack,
as described in [2].

References [1] Bocharova, Irina E., and Boris D. Kudryashov, “Rational Rate
Punctured Convolutional Codes for Soft-Decision Viterbi Decoding,”
IEEE Transactions on Information Theory, Vol. 43, No. 4, July 1997,
pp. 1305-1313.

[2] Cedervall, M., and R. Johannesson, “A Fast Algorithm for
Computing Distance Spectrum of Convolutional Codes,” IEEE
Transactions on Information Theory, Vol. 35, No. 6, Nov. 1989, pp.
1146-1159.

[3] Chang, Jinn-Ja, Der-June Hwang, and Mao-Chao Lin, "Some
Extended Results on the Search for Good Convolutional Codes," IEEE
Transactions on Information Theory, Vol. 43, No. 5, Sep. 1997, pp.
1682–1697.

15-96

distspec

[4] Frenger, Pål, Pål Orten, and Tony Ottosson, “Comments and
Additions to Recent Papers on New Convolutional Codes,” IEEE
Transactions on Information Theory, Vol. 47, No. 3, March 2001, pp.
1199-1201.

15-97

dpcmdeco

Purpose Decode using differential pulse code modulation

Syntax sig = dpcmdeco(indx,codebook,predictor)
[sig,quanterror] = dpcmdeco(indx,codebook,predictor)

Description sig = dpcmdeco(indx,codebook,predictor) implements differential
pulse code demodulation to decode the vector indx. The vector codebook
represents the predictive-error quantization codebook. The vector
predictor specifies the predictive transfer function. If the transfer
function has predictive order M, then predictor has length M+1 and
an initial entry of 0. To decode correctly, use the same codebook and
predictor in dpcmenco and dpcmdeco.

See “Representing Partitions” on page 5-2, “Representing Codebooks”
on page 5-2, or the reference page for quantiz in this chapter, for a
description of the formats of partition and codebook.

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the
same as the syntax above, except that the vector quanterror is
the quantization of the predictive error based on the quantization
parameters. quanterror is the same size as sig.

Note You can estimate the input parameters codebook, partition,
and predictor using the function dpcmopt.

Examples See “Example: DPCM Encoding and Decoding” on page 5-8
and “Example: Comparing Optimized and Nonoptimized DPCM
Parameters” on page 5-10 for examples that use dpcmdeco.

See Also quantiz, dpcmopt, dpcmenco, “Differential Pulse Code Modulation”
on page 5-7

References [1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley
& Sons, 1994.

15-98

dpcmenco

Purpose Encode using differential pulse code modulation

Syntax indx = dpcmenco(sig,codebook,partition,predictor)
[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description indx = dpcmenco(sig,codebook,partition,predictor) implements
differential pulse code modulation to encode the vector sig. partition
is a vector whose entries give the endpoints of the partition intervals.
codebook, a vector whose length exceeds the length of partition by one,
prescribes a value for each partition in the quantization. predictor
specifies the predictive transfer function. If the transfer function has
predictive order M, then predictor has length M+1 and an initial entry
of 0. The output vector indx is the quantization index.

See “Differential Pulse Code Modulation” on page 5-7 for more about
the format of predictor. See “Representing Partitions” on page 5-2,
“Representing Codebooks” on page 5-2, or the reference page for
quantiz in this chapter, for a description of the formats of partition
and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor)
is the same as the syntax above, except that quants contains the
quantization of sig based on the quantization parameters. quants is
a vector of the same size as sig.

Note If predictor is an order-one transfer function, then the
modulation is called a delta modulation.

Examples See “Example: DPCM Encoding and Decoding” on page 5-8
and “Example: Comparing Optimized and Nonoptimized DPCM
Parameters” on page 5-10 for examples that use dpcmenco.

See Also quantiz, dpcmopt,dpcmdeco, “Differential Pulse Code Modulation” on
page 5-7

15-99

dpcmenco

References [1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley
& Sons, 1994.

15-100

dpcmopt

Purpose Optimize differential pulse code modulation parameters

Syntax predictor = dpcmopt(training_set,ord)
[predictor,codebook,partition] = dpcmopt(training_set,ord,len)
[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb)

Description predictor = dpcmopt(training_set,ord) returns a vector
representing a predictive transfer function of order ord that is
appropriate for the training data in the vector training_set. predictor
is a row vector of length ord+1. See “Representing Predictors” on page
5-7 for more about its format.

Note dpcmopt optimizes for the data in training_set. For best results,
training_set should be similar to the data that you plan to quantize.

[predictor,codebook,partition] =
dpcmopt(training_set,ord,len) is the same as the
syntax above, except that it also returns corresponding optimized
codebook and partition vectors codebook and partition. len is an
integer that prescribes the length of codebook. partition is a vector of
length len-1. See “Representing Partitions” on page 5-2, “Representing
Codebooks” on page 5-2, or the reference page for quantiz in this
chapter, for a description of the formats of partition and codebook.

[predictor,codebook,partition] =
dpcmopt(training_set,ord,ini_cb) is the same as
the first syntax, except that it also returns corresponding optimized
codebook and partition vectors codebook and partition. ini_cb, a
vector of length at least 2, is the initial guess of the codebook values.
The output codebook is a vector of the same length as ini_cb. The
output partition is a vector whose length is one less than the length of
codebook.

Examples See “Example: Comparing Optimized and Nonoptimized DPCM
Parameters” on page 5-10 for an example that uses dpcmopt.

15-101

dpcmopt

See Also dpcmenco, dpcmdeco, quantiz, lloyds, “Differential Pulse Code
Modulation” on page 5-7

15-102

dpskdemod

Purpose Differential phase shift keying demodulation

Syntax z = dpskdemod(y,M)
z = dpskdemod(y,M,phaserot)

Description z = dpskdemod(y,M) demodulates the complex envelope y of a DPSK
modulated signal. M is the alphabet size and must be an integer. If y is a
matrix with multiple rows and columns, then the function processes
the columns independently.

Note The first element of the output z, or first row of z if z is a
matrix with multiple rows, represents an initial condition, because
the differential algorithm compares two successive elements of the
modulated signal.

z = dpskdemod(y,M,phaserot) specifies the phase rotation of the
modulation in radians. In this case, the total phase shift per symbol
is the sum of phaserot and the phase generated by the differential
modulation.

Examples The example below illustrates the fact that the first output symbol
of a differential PSK demodulator is an initial condition rather than
useful information.

M = 4; % Alphabet size

x = randint(1000,1,M); % Random message

y = dpskmod(x,M); % Modulate.

z = dpskdemod(y,M); % Demodulate.

% Check whether the demodulator recovered the message.

s1 = symerr(x,z) % Expect one symbol error, namely, the first symbol.

s2 = symerr(x(2:end),z(2:end)) % Ignoring 1st symbol, expect no errors.

The output is below.

15-103

dpskdemod

s1 =

1

s2 =

0

For another example that uses this function, see “Example: Curve
Fitting for an Error Rate Plot” on page 3-14.

See Also dpskmod, pskdemod, pskmod, Chapter 8, “Modulation”

15-104

dpskmod

Purpose Differential phase shift keying modulation

Syntax y = dpskmod(x,M)
y = dpskmod(x,M,phaserot)

Description y = dpskmod(x,M) outputs the complex envelope y of the modulation of
the message signal x using differential phase shift keying modulation. M
is the alphabet size and must be an integer. The message signal must
consist of integers between 0 and M-1. If x is a matrix with multiple rows
and columns, then the function processes the columns independently.

y = dpskmod(x,M,phaserot) specifies the phase rotation of the
modulation in radians. In this case, the total phase shift per symbol
is the sum of phaserot and the phase generated by the differential
modulation.

Examples The example below plots the output of the dpskmod function. The image
shows the possible transitions from each symbol in the DPSK signal
constellation to the next symbol.

M = 4; % Use DQPSK in this example, so M is 4.
x = randint(500,1,M,13); % Random data
y = dpskmod(x,M,pi/8); % Modulate using a nonzero initial phase.
plot(y) % Plot all points, using lines to connect them.

15-105

dpskmod

For another example that uses this function, see “Example: Curve
Fitting for an Error Rate Plot” on page 3-14.

See Also dpskdemod, pskmod, pskdemod, Chapter 8, “Modulation”

15-106

encode

Purpose Block encoder

Syntax code = encode(msg,n,k,'linear/fmt',genmat)
code = encode(msg,n,k,'cyclic/fmt',genpoly)
code = encode(msg,n,k,'hamming/fmt',prim_poly)
code = encode(msg,n,k)
[code,added] = encode(...)

Optional
Inputs

Input Default Value

fmt binary

genpoly cyclpoly(n,k)

prim_poly gfprimdf(n-k)

Description For All Syntaxes

The encode function encodes messages using one of the following
error-correction coding methods:

• Linear block

• Cyclic

• Hamming

For all of these methods, the codeword length is n and the message
length is k.

msg, which represents the messages, can have one of several formats.
The table below shows which formats are allowed for msg, how the
argument fmt should reflect the format of msg, and how the format of the
output code depends on these choices. The examples in the table are for
k = 4. If fmt is not specified as input, then its default value is binary.

15-107

encode

Note If 2^n or 2^k is large, then you should use the default binary
format instead of the decimal format. This is because the function
uses a binary format internally, while the roundoff error associated
with converting many bits to large decimal numbers and back might
be substantial.

Information Formats

Format of msg Value of "fmt"
Argument

Format of code

Binary column vector binary Binary column vector

Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1].'

Binary matrix with k
columns

binary Binary matrix with n
columns

Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1]

Column vector of
integers in the range
[0, 2^k-1]

decimal Column vector of
integers in the range
[0, 2^n-1]

Example: msg = [6, 10, 9].'

For Specific Syntaxes

code = encode(msg,n,k,'linear/fmt',genmat) encodes msg using
genmat as the generator matrix for the linear block encoding method.
genmat, a k-by-n matrix, is required as input.

code = encode(msg,n,k,'cyclic/fmt',genpoly) encodes msg and
creates a systematic cyclic code. genpoly is a row vector that gives
the coefficients, in order of ascending powers, of the binary generator
polynomial. The default value of genpoly is cyclpoly(n,k). By
definition, the generator polynomial for an [n,k] cyclic code must have
degree n-k and must divide xn-1.

15-108

encode

code = encode(msg,n,k,'hamming/fmt',prim_poly) encodes msg using
the Hamming encoding method. For this syntax, n must have the form
2m-1 for some integer m greater than or equal to 3, and k must equal
n-m. prim_poly is a row vector that gives the binary coefficients, in
order of ascending powers, of the primitive polynomial for GF(2m) that
is used in the encoding process. The default value of prim_poly is the
default primitive polynomial gfprimdf(m).

code = encode(msg,n,k) is the same as code =
encode(msg,n,k,'hamming/binary').

[code,added] = encode(...) returns the additional variable added.
added is the number of zeros that were placed at the end of the message
matrix before encoding, in order for the matrix to have the appropriate
shape. "Appropriate" depends on n, k, the shape of msg, and the
encoding method.

Examples The example below illustrates the three different information formats
(binary vector, binary matrix, and decimal vector) for Hamming code.
The three messages have identical content in different formats; as a
result, the three codes that encode creates have identical content in
correspondingly different formats.

m = 4; n = 2^m-1; % Codeword length = 15
k = 11; % Message length

% Create 100 messages, k bits each.
msg1 = randint(100*k,1,[0,1]); % As a column vector
msg2 = vec2mat(msg1,k); % As a k-column matrix
msg3 = bi2de(msg2); % As a column of decimal integers

% Create 100 codewords, n bits each.
code1 = encode(msg1,n,k,'hamming/binary');
code2 = encode(msg2,n,k,'hamming/binary');
code3 = encode(msg3,n,k,'hamming/decimal');
if (vec2mat(code1,n)==code2 & de2bi(code3,n)==code2)

disp('All three formats produced the same content.')
end

15-109

encode

The output is

All three formats produced the same content.

The next example creates a cyclic code, adds noise, and then decodes
the noisy code. It uses the decode function.

n = 3; k = 2; % A (3,2) cyclic code
msg = randint(100,k,[0,1]); % 100 messages, k bits each
code = encode(msg,n,k,'cyclic/binary');
% Add noise.
noisycode = rem(code + randerr(100,n,[0 1;.7 .3]), 2);
newmsg = decode(noisycode,n,k,'cyclic'); % Try to decode.
% Compute error rate for decoding the noisy code.
[number,ratio] = biterr(newmsg,msg);
disp(['The bit error rate is ',num2str(ratio)])

The output is below. Your error rate results might vary because the
noise is random.

The bit error rate is 0.08

The next example encodes the same message using Hamming and cyclic
methods. This example also creates Hamming code with the 'linear'
option of the encode command. It then decodes each code and recovers
the original message.

n = 7; % Codeword length
k = 4; % Message length
m = log2(n+1); % Express n as 2^m-1.
msg = randint(100,1,[0,2^k-1]); % Column of decimal integers

% Create various codes.
codehamming = encode(msg,n,k,'hamming/decimal');
[parmat,genmat] = hammgen(m);
codehamming2 = encode(msg,n,k,'linear/decimal',genmat);
if codehamming==codehamming2

disp('The ''linear'' method can create Hamming code.')

15-110

encode

end
codecyclic = encode(msg,n,k,'cyclic/decimal');

% Decode to recover the original message.
decodedhamming = decode(codehamming,n,k,'hamming/decimal');
decodedcyclic = decode(codecyclic,n,k,'cyclic/decimal');
if (decodedhamming==msg & decodedcyclic==msg)

disp('All decoding worked flawlessly in this noiseless world.')
end

The output is

The 'linear' method can create Hamming code.
All decoding worked flawlessly in this noiseless world.

Algorithm Depending on the encoding method, encode relies on such lower-level
functions as hammgen and cyclgen.

See Also decode, cyclpoly, cyclgen, hammgen, “Block Coding” on page 6-2

15-111

equalize

Purpose Equalize a signal using an equalizer object

Syntax y = equalize(eqobj,x)
y = equalize(eqobj,x,trainsig)
[y,yd] = equalize(...)
[y,yd,e] = equalize(...)

Description y = equalize(eqobj,x) processes the baseband signal vector x with
equalizer object eqobj and returns the equalized signal vector y. At the
end of the process, eqobj contains updated state information such as
equalizer weight values and input buffer values. To construct eqobj, use
the lineareq or dfe function, as described in “Using Adaptive Equalizer
Functions and Objects” on page 11-8. The equalize function assumes
that the signal x is sampled at nsamp samples per symbol, where
nsamp is the value of the nSampPerSym property of eqobj. For adaptive
algorithms other than CMA, the equalizer adapts in decision-directed
mode using a detector specified by the SigConst property of eqobj. The
delay of the equalizer is (eqobj.RefTap-1)/eqobj.nSampPerSym, as
described in “Delays from Equalization” on page 11-21.

If eqobj.ResetBeforeFiltering is 0, then equalize uses the
existing state information in eqobj when starting the equalization
operation. As a result, equalize(eqobj,[x1 x2]) is equivalent to
[equalize(eqobj,x1) equalize(eqobj,x2)]. To reset eqobj manually,
apply the reset function to eqobj.

If eqobj.ResetBeforeFiltering is 1, then equalize resets eqobj
before starting the equalization operation, overwriting any previous
state information in eqobj.

y = equalize(eqobj,x,trainsig) initially uses a training
sequence to adapt the equalizer. After processing the training
sequence, the equalizer adapts in decision-directed mode.
The vector length of trainsig must be less than or equal to
length(x)-(eqobj.RefTap-1)/eqobj.nSampPerSym.

[y,yd] = equalize(...) returns the vector yd of detected data
symbols.

15-112

equalize

[y,yd,e] = equalize(...) returns the result of the error calculation
described in “Error Calculation” on page 11-5. For adaptive algorithms
other than CMA, e is the vector of errors between y and the reference
signal, where the reference signal consists of the training sequence
or detected symbols.

Examples For examples that use this function, see “Equalizing Using a Training
Sequence” on page 11-17, “Example: Equalizing Multiple Times,
Varying the Mode” on page 11-20, and “Example: Adaptive Equalization
Within a Loop” on page 11-23.

See Also lms, signlms, normlms, varlms, rls, cma, lineareq, dfe, Chapter 11,
“Equalizers”

15-113

eyediagram

Purpose Generate an eye diagram

Syntax eyediagram(x,n)
eyediagram(x,n,period)
eyediagram(x,n,period,offset)
eyediagram(x,n,period,offset,plotstring)
eyediagram(x,n,period,offset,plotstring,h)
h = eyediagram(...)

Description eyediagram(x,n) creates an eye diagram for the signal x, plotting n
samples in each trace. n must be an integer greater than 1. The labels
on the horizontal axis of the diagram range between -1/2 and 1/2. The
function assumes that the first value of the signal, and every nth value
thereafter, occur at integer times. The interpretation of x and the
number of plots depend on the shape and complexity of x:

• If x is a real two-column matrix, then eyediagram interprets the
first column as in-phase components and the second column as
quadrature components. The two components appear in different
subplots of a single figure window.

• If x is a complex vector, then eyediagram interprets the real part
as in-phase components and the imaginary part as quadrature
components. The two components appear in different subplots of
a single figure window.

• If x is a real vector, then eyediagram interprets it as a real signal.
The figure window contains a single plot.

eyediagram(x,n,period) is the same as the syntax above, except
that the labels on the horizontal axis range between -period/2 and
period/2.

eyediagram(x,n,period,offset) is the same as the syntax above,
except that the function assumes that the (offset+1)st value of the
signal, and every nth value thereafter, occur at times that are integer
multiples of period. The variable offset must be a nonnegative integer
between 0 and n-1.

15-114

eyediagram

eyediagram(x,n,period,offset,plotstring) is the same as the
syntax above, except that plotstring determines the plotting symbol,
line type, and color for the plot. plotstring is a string whose format
and meaning are the same as in the plot function. The default string is
'b-', which produces a blue solid line.

eyediagram(x,n,period,offset,plotstring,h) is the same as the
syntax above, except that the eye diagram is in the figure whose handle
is h, rather than a new figure. h must be a handle to a figure that
eyediagram previously generated.

Note You cannot use hold on to plot multiple signals in the same
figure.

h = eyediagram(...) is the same as the earlier syntaxes, except that
h is the handle to the figure that contains the eye diagram.

Examples See “Example: Eye Diagrams” on page 3-19 for an example. For an
online demonstration, type playshow scattereyedemo.

See Also scatterplot, plot, scattereyedemo, “Eye Diagrams” on page 3-19

15-115

fft

Purpose Discrete Fourier transform

Syntax fft(x)

Description fft(x) is the discrete Fourier transform (DFT) of the Galois vector x.
If x is in the Galois field GF(2m), then the length of x must be 2m-1.

Examples m = 4;
n = 2^m-1;
x = gf(randint(n,1,2^m),m); % Random vector
y = fft(x); % Transform of x
z = ifft(y); % Inverse transform of y
ck = isequal(z,x) % Check that ifft(fft(x)) recovers x.

The output is

ck =

1

Limitations The Galois field over which this function works must have 256 or fewer
elements. In other words, x must be in the Galois field GF(2m), where
m is an integer between 1 and 8.

Algorithm If x is a column vector, then fft applies dftmtx to the primitive element
of the Galois field and multiplies the resulting matrix by x.

See Also ifft, dftmtx, “Signal Processing Operations in Galois Fields” on page
12-27

15-116

filter (channel)

Purpose Filter signal with channel object

Syntax y = filter(chan,x)

Description y = filter(chan,x) processes the baseband signal vector x with the
channel object chan. The result is the signal vector y. The final state
of the channel is stored in chan. You can construct chan using either
rayleighchan or ricianchan. The filter function assumes x is
sampled at frequency 1/ts, where ts equals the InputSamplePeriod
property of chan.

If chan.ResetBeforeFiltering is 0, then filter uses the existing
state information in chan when starting the filtering operation. As
a result, filter(chan,[x1 x2]) is equivalent to [filter(chan,x1)
filter(chan,x2)]. To reset chan manually, apply the reset function
to chan.

If chan.ResetBeforeFiltering is 1, then filter resets chan before
starting the filtering operation, overwriting any previous state
information in chan.

Examples Examples using this function are in “Using Fading Channels” on page
10-14.

See Also rayleighchan, ricianchan, reset, “Fading Channels” on page 10-6

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.

15-117

filter (gf)

Purpose One-dimensional digital filter over a Galois field

Syntax y = filter(b,a,x)
[y,zf] = filter(b,a,x)

Description y = filter(b,a,x) filters the data in the vector x with the filter
described by numerator coefficient vector b and denominator coefficient
vector a. The vectors b, a, and x must be Galois vectors in the same field.
If a(1) is not equal to 1, then filter normalizes the filter coefficients
by a(1). As a result, a(1) must be nonzero.

The filter is a "Direct Form II Transposed" implementation of the
standard difference equation below.

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) ...
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[y,zf] = filter(b,a,x) returns the final conditions of the filter
delays in the Galois vector zf. The length of the vector zf is
max(size(a),size(b))-1.

Examples An example is in “Filtering” on page 12-27.

15-118

fmdemod

Purpose Frequency demodulation

Syntax z = fmdemod(y,Fc,Fs,freqdev)
z = fmdemod(y,Fc,Fs,freqdev,ini_phase)

Description z = fmdemod(y,Fc,Fs,freqdev) demodulates the modulating signal
z from the carrier signal using frequency demodulation. The carrier
signal has frequency Fc (Hz) and sampling rate Fs (Hz), where Fs must
be at least 2*Fc. The freqdev argument is the frequency deviation (Hz)
of the modulated signal y.

z = fmdemod(y,Fc,Fs,freqdev,ini_phase) specifies the initial phase
of the modulated signal, in radians.

Examples An example using fmdemod is on the reference page for fmmod.

See Also fmmod, pmmod, pmdemod, Chapter 8, “Modulation”

15-119

fmmod

Purpose Frequency modulation

Syntax y = fmmod(x,Fc,Fs,freqdev)
y = fmmod(x,Fc,Fs,freqdev,ini_phase)

Description y = fmmod(x,Fc,Fs,freqdev) modulates the message signal x using
frequency modulation. The carrier signal has frequency Fc (Hz) and
sampling rate Fs (Hz), where Fs must be at least 2*Fc. The freqdev
argument is the frequency deviation (Hz) of the modulated signal.

y = fmmod(x,Fc,Fs,freqdev,ini_phase) specifies the initial phase of
the modulated signal, in radians.

Examples The code below modulates a multichannel signal using fmmod and
demodulates it using fmdemod.

Fs = 8000; % Sampling rate of signal
Fc = 3000; % Carrier frequency
t = [0:Fs]'/Fs; % Sampling times
s1 = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Channel 1
s2 = sin(2*pi*150*t)+2*sin(2*pi*900*t); % Channel 2
x = [s1,s2]; % Two-channel signal
dev = 50; % Frequency deviation in modulated signal
y = fmmod(x,Fc,Fs,dev); % Modulate both channels.
z = fmdemod(y,Fc,Fs,dev); % Demodulate both channels.

See Also fmdemod, ammod, pmmod, Chapter 8, “Modulation”

15-120

fskdemod

Purpose Frequency shift keying demodulation

Syntax z = fskdemod(y,M,freq_sep,nsamp)
z = fskdemod(y,M,freq_sep,nsamp,Fs)

Description z = fskdemod(y,M,freq_sep,nsamp) noncoherently demodulates the
complex envelope y of a signal using the frequency shift key method.
M is the alphabet size and must be an integer power of 2. freq_sep is
the frequency separation between successive frequencies in Hz. nsamp
is the required number of samples per symbol and must be a positive
integer greater than 1. The sampling frequency is 1 Hz. If y is a
matrix with multiple rows and columns, then the function processes
the columns independently.

z = fskdemod(y,M,freq_sep,nsamp,Fs) specifies the sampling
frequency in Hz.

Examples The example below illustrates FSK modulation and demodulation over
an AWGN channel.

M = 2; k = log2(M);
EbNo = 5;
Fs = 16; N = Fs;
nsamp = 17; freqsep = 8;
msg = randint(5000,1,M); % Random signal
txsig = fskmod(msg,M,freqsep,nsamp,Fs); % Modulate.
msg_rx = awgn(txsig,EbNo+10*log10(k)-10*log10(N),...

'measured',[],'dB'); % AWGN channel
msg_rrx = fskdemod(msg_rx,M,freqsep,nsamp,Fs); % Demodulate
[num,SER] = symerr(msg,msg_rrx); % Symbol error rate
BER = SER*(M/2)/(M-1) % Bit error rate
BER_theory = berawgn(EbNo,'fsk',M,'noncoherent') % Theoretical BER

The output is below. Your BER value might vary because the example
uses random numbers.

15-121

fskdemod

BER =

0.1006

BER_theory =

0.1029

See Also fskmod, pskmod, pskdemod, Chapter 8, “Modulation”

15-122

fskmod

Purpose Frequency shift keying modulation

Syntax y = fskmod(x,M,freq_sep,nsamp)
y = fskmod(x,M,freq_sep,nsamp,Fs)
y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont)

Description y = fskmod(x,M,freq_sep,nsamp) outputs the complex envelope y of
the modulation of the message signal x using frequency shift keying
modulation. M is the alphabet size and must be an integer power of
2. The message signal must consist of integers between 0 and M-1.
freq_sep is the desired separation between successive frequencies
in Hz. nsamp denotes the number of samples per symbol in y and
must be a positive integer greater than 1. The sampling rate of y is 1
Hz. By the Nyquist sampling theorem, freq_sep and M must satisfy
(M-1)*freq_sep <= 1. If x is a matrix with multiple rows and columns,
then the function processes the columns independently.

y = fskmod(x,M,freq_sep,nsamp,Fs) specifies the sampling rate
of y in Hz. Because the Nyquist sampling theorem implies that the
maximum frequency must be no larger than Fs/2, the inputs must
satisfy (M-1)*freq_sep <= Fs.

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont) specifies the phase
continuity. Set phase_cont to 'cont' to force phase continuity across
symbol boundaries in y, or 'discont' to avoid forcing phase continuity.
The default is 'cont'.

Examples The example below illustrates the syntax of fskmod using a random
signal.

M = 4; freqsep = 8; nsamp = 8; Fs = 32;
x = randint(1000,1,M); % Random signal
y = fskmod(x,M,freqsep,nsamp,Fs); % Modulate.
ly = length(y);
% Create an FFT plot.
freq = [-Fs/2 : Fs/ly : Fs/2 - Fs/ly];
Syy = 10*log10(fftshift(abs(fft(y))));
plot(freq,Syy)

15-123

fskmod

See Also fskdemod, pskmod, pskdemod, Chapter 8, “Modulation”

15-124

gen2par

Purpose Convert between parity-check and generator matrices

Syntax parmat = gen2par(genmat)
genmat = gen2par(parmat)

Description parmat = gen2par(genmat) converts the standard-form binary
generator matrix genmat into the corresponding parity-check matrix
parmat.

genmat = gen2par(parmat) converts the standard-form binary
parity-check matrix parmat into the corresponding generator matrix
genmat.

The standard forms of the generator and parity-check matrices for an
[n,k] binary linear block code are shown in the table below

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

.

where Ik is the identity matrix of size k and the ' symbol indicates
matrix transpose. Two standard forms are listed for each type, because
different authors use different conventions. For binary codes, the minus
signs in the parity-check form listed above are irrelevant; that is, -1 = 1
in the binary field.

Examples The commands below convert the parity-check matrix for a Hamming
code into the corresponding generator matrix and back again.

parmat = hammgen(3)
genmat = gen2par(parmat)
parmat2 = gen2par(genmat) % Ans should be the same as parmat above

The output is

15-125

gen2par

parmat =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

genmat =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

parmat2 =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

See Also cyclgen, hammgen, “Block Coding” on page 6-2

15-126

genqamdemod

Purpose General quadrature amplitude demodulation

Syntax z = genqamdemod(y,const)

Description z = genqamdemod(y,const) demodulates the complex envelope y of a
quadrature amplitude modulated signal. The complex vector const
specifies the signal mapping. If y is a matrix with multiple rows, then
the function processes the columns independently.

Examples The reference page for genqammod has an example that uses
genqamdemod.

See Also genqammod, qammod, qamdemod, pammod, pamdemod, Chapter 8,
“Modulation”

15-127

genqammod

Purpose General quadrature amplitude modulation

Syntax y = genqammod(x,const)

Description y = genqammod(x,const) outputs the complex envelope y of the
modulation of the message signal x using quadrature amplitude
modulation. The message signal must consist of integers between
0 and length(const)-1. The complex vector const specifies the
signal mapping. If x is a matrix with multiple rows, then the function
processes the columns independently.

Examples The code below plots a signal constellation that has a hexagonal
structure. It also uses genqammod and genqamdemod to modulate and
demodulate a message [3 8 5 10 7] using this constellation.

% Describe hexagonal constellation.

inphase = [1/2 1 1 1/2 1/2 2 2 5/2];

quadr = [0 1 -1 2 -2 1 -1 0];

inphase = [inphase;-inphase]; inphase = inphase(:);

quadr = [quadr;quadr]; quadr = quadr(:);

const = inphase + j*quadr;

% Plot constellation.

h = scatterplot(const);

% Modulate message using this constellation.

x = [3 8 5 10 7]; % Message signal

y = genqammod(x,const);

z = genqamdemod(y,const); % Demodulate.

% Plot modulated signal in same figure.

hold on; scatterplot(y,1,0,'ro',h);

legend('Constellation','Modulated signal','Location','NorthWest'); % Include legend.

hold off;

15-128

genqammod

Another example using this function is the Gray-coded constellation
example in “Examples of Signal Constellation Plots” on page 8-12.

See Also genqamdemod, qammod, qamdemod, pammod, pamdemod, Chapter 8,
“Modulation”

15-129

gf

Purpose Create a Galois field array

Syntax x_gf = gf(x,m)
x_gf = gf(x,m,prim_poly)
x_gf = gf(x)

Description x_gf = gf(x,m) creates a Galois field array from the matrix x. The
Galois field has 2^m elements, where m is an integer between 1 and 16.
The elements of x must be integers between 0 and 2^m-1. The output
x_gf is a variable that MATLAB recognizes as a Galois field array,
rather than an array of integers. As a result, when you manipulate
x_gf using operators or functions such as + or det, MATLAB works
within the Galois field you have specified.

Note To learn how to manipulate x_gf using familiar MATLAB
operators and functions, see Chapter 12, “Galois Field Computations”.
To learn how the integers in x represent elements of GF(2^m), see “How
Integers Correspond to Galois Field Elements” on page 12-7.

x_gf = gf(x,m,prim_poly) is the same as the previous syntax, except
that it uses the primitive polynomial prim_poly to define the field.
prim_poly is the integer representation of a primitive polynomial. For
example, the number 41 represents the polynomial D^5+D^2+1 because
the binary form of 41 is 1 0 0 1 0 1. For more information about the
primitive polynomial, see “Specifying the Primitive Polynomial” on
page 12-9.

x_gf = gf(x) creates a GF(2) array from the matrix x. Each element
of x must be 0 or 1.

Default Primitive Polynomials

The table below lists the primitive polynomial that gf uses by default
for each Galois field GF(2^m). To use a different primitive polynomial,
specify prim_poly as an input argument when you invoke gf.

15-130

gf

m Default Primitive
Polynomial

Integer
Representation

1 D + 1 3

2 D^2 + D + 1 7

3 D^3 + D + 1 11

4 D^4 + D + 1 19

5 D^5 + D^2 + 1 37

6 D^6 + D + 1 67

7 D^7 + D^3 + 1 137

8 D^8 + D^4 + D^3 +
D^2 + 1

285

9 D^9 + D^4 + 1 529

10 D^10 + D^3 + 1 1033

11 D^11 + D^2 + 1 2053

12 D^12 + D^6 + D^4 +
D + 1

4179

13 D^13 + D^4 + D^3 +
D + 1

8219

14 D^14 + D^10 + D^6
+ D + 1

17475

15 D^15 + D + 1 32771

16 D^16 + D^12 + D^3
+ D + 1

69643

Examples For examples that use gf, see

• “Example: Creating Galois Field Variables” on page 12-5

15-131

gf

• “Example: Representing a Primitive Element” on page 12-8

• Other sample code within Chapter 12, “Galois Field Computations”

• The Galois field demonstration: type playshow gfdemo.

See Also gftable, list of functions and operators for Galois field computations,
gfdemo, Chapter 12, “Galois Field Computations”

15-132

gfadd

Purpose Add polynomials over a Galois field

Syntax c = gfadd(a,b,p)
c = gfadd(a,b,p,len)
c = gfadd(a,b,field)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), apply the + operator to Galois arrays of equal size.
For details, see “Example: Addition and Subtraction” on page 12-14.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime
number. a, b, and c are row vectors that give the coefficients of
the corresponding polynomials in order of ascending powers. Each
coefficient is between 0 and p-1. If a and b are matrices of the same size,
then the function treats each row independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous
syntax, except that it returns a row vector of length len. The output c is
a truncated or extended representation of the sum. If the row vector
corresponding to the sum has fewer than len entries (including zeros),
then extra zeros are added at the end; if it has more than len entries,
then entries from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a
positive integer. a and b are the exponential format of the two elements,
relative to some primitive element of GF(pm). field is the matrix listing
all elements of GF(pm), arranged relative to the same primitive element.
c is the exponential format of the sum, relative to the same primitive
element. See “Representing Elements of Galois Fields” on page 13-4 for
an explanation of these formats. If a and b are matrices of the same
size, then the function treats each element independently.

Examples In the code below, sum5 is the sum of 2 + 3x + x2 and 4 + 2x + 3x2 over
GF(5), and linpart is the degree-one part of sum5.

sum5 = gfadd([2 3 1],[4 2 3],5)

15-133

gfadd

linpart = gfadd([2 3 1],[4 2 3],5,2)

The output is

sum5 =

1 0 4

linpart =

1 0

The code below shows that A2 + A4 = A1, where A is a root of the
primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
g = gfadd(2,4,field)

The output is

g =

1

Other examples are in “Arithmetic in Galois Fields” on page 13-13.

See Also gfsub, gfconv, gfmul, gfdeconv, gfdiv, gftuple, Chapter 13, “Galois
Fields of Odd Characteristic”

15-134

gfconv

Purpose Multiply polynomials over a Galois field

Syntax c = gfconv(a,b,p)
c = gfconv(a,b,field)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the conv function with Galois arrays. For
details, see “Multiplication and Division of Polynomials” on page 12-30.

The gfconv function multiplies polynomials over a Galois field. (To
multiply elements of a Galois field, use gfmul instead.) Algebraically,
multiplying polynomials over a Galois field is equivalent to convolving
vectors containing the polynomials’ coefficients, where the convolution
operation uses arithmetic over the same Galois field.

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a
prime number. a, b, and c are row vectors that give the coefficients of
the corresponding polynomials in order of ascending powers. Each
coefficient is between 0 and p-1.

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where p is
a prime number and m is a positive integer. a, b, and c are row vectors
that list the exponential formats of the coefficients of the corresponding
polynomials, in order of ascending powers. The exponential format
is relative to some primitive element of GF(pm). field is the matrix
listing all elements of GF(pm), arranged relative to the same primitive
element. See “Representing Elements of Galois Fields” on page 13-4 for
an explanation of these formats.

Examples The command below shows that

()()1 24 2 2 3 5 6+ + + = + + + +x x x x x x x x x

over GF(3).

gfc = gfconv([1 1 0 0 1],[0 1 1],3)

15-135

gfconv

The output is

gfc =

0 1 2 1 0 1 1

The code below illustrates the identity

()x x x xr s p rp sp+ = +

for the case in which p = 7, r = 5, and s = 3. (The identity holds when p
is any prime number, and r and s are positive integers.)

p = 7; r = 5; s = 3;
a = gfrepcov([r s]); % x^r + x^s

% Compute a^p over GF(p).
c = 1;
for ii = 1:p

c = gfconv(c,a,p);
end;

% Check whether c = x^(rp) + x^(sp).
powers = [];
for ii = 1:length(c)

if c(ii)~=0
powers = [powers, ii];

end;
end;
if (powers==[r*p+1 s*p+1] | powers==[s*p+1 r*p+1])

disp('The identity is proved for this case of r, s, and p.')
end

See Also gfdeconv, gfadd, gfsub, gfmul, gftuple, Chapter 13, “Galois Fields of
Odd Characteristic”

15-136

gfcosets

Purpose Produce cyclotomic cosets for a Galois field

Syntax c = gfcosets(m,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the cosets function.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(p^m), where
m is a positive integer and p is a prime number.

The output matrix c is structured so that each row represents one coset.
The row represents the coset by giving the exponential format of the
elements of the coset, relative to the default primitive polynomial for
the field. For a description of exponential formats, see “Representing
Elements of Galois Fields” on page 13-4.

The first column contains the coset leaders. Because the lengths of
cosets might vary, entries of NaN are used to fill the extra spaces when
necessary to make c rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal
polynomial. For more details on cyclotomic cosets, see the works listed
in References on page 138 below.

Examples The command below finds the cyclotomic cosets for GF(9).

c = gfcosets(2,3)

The output is

c =

0 NaN
1 3
2 6
4 NaN
5 7

15-137

gfcosets

The gfminpol function can check that the elements of, for example, the
third row of c indeed belong in the same coset.

m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.

The output is

m =

2 0 1
2 0 1

See Also gfminpol, gfprimdf, gfroots, Chapter 13, “Galois Fields of Odd
Characteristic”

References [1] Blahut, Richard E., Theory and Practice of Error Control Codes,
Reading, Mass., Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Englewood Cliffs, N.J., Prentice-Hall,
1983.

15-138

gfdeconv

Purpose Divide polynomials over a Galois field

Syntax [quot,remd] = gfdeconv(b,a,p)
[quot,remd] = gfdeconv(b,a,field)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the deconv function with Galois arrays. For
details, see “Multiplication and Division of Polynomials” on page 12-30.

The gfdeconv function divides polynomials over a Galois field. (To divide
elements of a Galois field, use gfdiv instead.) Algebraically, dividing
polynomials over a Galois field is equivalent to deconvolving vectors
containing the polynomials’ coefficients, where the deconvolution
operation uses arithmetic over the same Galois field.

[quot,remd] = gfdeconv(b,a,p) divides the polynomial b by the
polynomial a over GF(p) and returns the quotient in quot and the
remainder in remd. p is a prime number. b, a, quot, and remd are row
vectors that give the coefficients of the corresponding polynomials in
order of ascending powers. Each coefficient is between 0 and p-1.

[quot,remd] = gfdeconv(b,a,field) divides the polynomial b by the
polynomial a over GF(pm) and returns the quotient in quot and the
remainder in remd. Here p is a prime number and m is a positive integer.
b, a, quot, and remd are row vectors that list the exponential formats of
the coefficients of the corresponding polynomials, in order of ascending
powers. The exponential format is relative to some primitive element of
GF(pm). field is the matrix listing all elements of GF(pm), arranged
relative to the same primitive element. See “Representing Elements of
Galois Fields” on page 13-4 for an explanation of these formats.

Examples The code below shows that

() ()x x x x x+ + ÷ + = +3 4 31 1 2 Remainder

15-139

gfdeconv

in GF(3). It also checks the results of the division.

p = 3;
b = [0 1 0 1 1]; a = [1 1];
[quot, remd] = gfdeconv(b,a,p)
% Check the result.
bnew = gfadd(gfconv(quot,a,p),remd,p);
if isequal(bnew,b)

disp('Correct.')
end;

The output is below.

quot =

1 0 0 1

remd =

2

Correct.

Working over GF(3), the code below outputs those polynomials of the
form xk - 1 (k = 2, 3, 4,..., 8) that 1 + x2 divides evenly.

p = 3; m = 2;
a = [1 0 1]; % 1+x^2
for ii = 2:p^m-1

b = gfrepcov(ii); % x^ii
b(1) = p-1; % -1+x^ii
[quot, remd] = gfdeconv(b,a,p);
% Display -1+x^ii if a divides it evenly.
if remd==0

multiple{ii}=b;
gfpretty(b)

end
end

15-140

gfdeconv

The output is below.

4
2 + X

8
2 + X

In light of the discussion in Algorithm on page 153 on the reference
page for gfprimck along with the irreducibility of 1 + x2 over GF(3), this
output indicates that 1 + x2 is not primitive for GF(9).

Algorithm The algorithm of gfdeconv is similar to that of the MATLAB function
deconv.

See Also gfconv, gfadd, gfsub, gfdiv, gftuple, Chapter 13, “Galois Fields of
Odd Characteristic”

15-141

gfdiv

Purpose Divide elements of a Galois field

Syntax quot = gfdiv(b,a,p)
quot = gfdiv(b,a,field)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), apply the ./ operator to Galois arrays. For details,
see “Example: Division” on page 12-16.

The gfdiv function divides elements of a Galois field. (To divide
polynomials over a Galois field, use gfdeconv instead.)

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient.
p is a prime number. If a and b are matrices of the same size, then
the function treats each element independently. All entries of b, a,
and quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the
quotient. p is a prime number and m is a positive integer. If a and b
are matrices of the same size, then the function treats each element
independently. All entries of b, a, and quot are the exponential formats
of elements of GF(pm) relative to some primitive element of GF(pm).
field is the matrix listing all elements of GF(pm), arranged relative to
the same primitive element. See “Representing Elements of Galois
Fields” on page 13-4 for an explanation of these formats.

In all cases, an attempt to divide by the zero element of the field results
in a "quotient" of NaN.

Examples The code below displays lists of multiplicative inverses in GF(5) and
GF(25). It uses column vectors as inputs to gfdiv.

% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';

15-142

gfdiv

quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element inverse')
disp([a, quot1])

% Find inverses of nonzero elements of GF(25).
m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element inverse')
disp([a, quot2])

See Also gfmul, gfdeconv, gfconv, gftuple, Chapter 13, “Galois Fields of Odd
Characteristic”

15-143

gffilter

Purpose Filter data using polynomials over a prime Galois field

Syntax y = gffilter(b,a,x,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the filter function with Galois arrays. For
details, see “Filtering” on page 12-27.

y = gffilter(b,a,x,p) filters the data x using the filter described by
vectors a and b. y is the filtered data in GF(p). p is a prime number, and
all entries of a and b are between 0 and p-1.

By definition of the filter, y solves the difference equation

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B)
-a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where

• A+1 is the length of the vector a

• B+1 is the length of the vector b

• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x^2+...+a(A+1)x^A

Examples The impulse response of a particular filter is given in the code and
diagram below.

b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);

15-144

gffilter

axis([0 20 -.1 1.1])

See Also gfconv, gfadd, filter, Chapter 13, “Galois Fields of Odd Characteristic”

15-145

gflineq

Purpose Find a particular solution of Ax = b over a prime Galois field

Syntax x = gflineq(A,b,p)
[x,vld] = gflineq(...)

Description
Note This function performs computations in GF(p) where p is odd. To
work in GF(2m), apply the \ or / operator to Galois arrays. For details,
see “Solving Linear Equations” on page 12-25.

x = gflineq(A,b,p) returns a particular solution of the linear
equation A x = b over GF(p), where p is a prime number. If A is a
k-by-n matrix and b is a vector of length k, then x is a vector of length
n. Each entry of A, x, and b is an integer between 0 and p-1. If no
solution exists, then x is empty.

[x,vld] = gflineq(...) returns a flag vld that indicates the
existence of a solution. If vld = 1, then the solution x exists and is valid;
if vld = 0, then no solution exists.

Examples The code below produces some valid solutions of a linear equation over
GF(3).

A = [2 0 1;
1 1 0;
1 1 2];

% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0],3)

The output is below.

x =

2
1
0

15-146

gflineq

vld =

1

By contrast, the command below finds that the linear equation has
no solutions.

[x2,vld2] = gflineq(zeros(3,3),[2;0;0],3)

The output is below.

This linear equation has no solution.

x2 =

[]

vld2 =

0

Algorithm gflineq uses Gaussian elimination.

See Also gfadd, gfdiv, gfroots, gfrank, gfconv, conv, Chapter 13, “Galois
Fields of Odd Characteristic”

15-147

gfminpol

Purpose Find the minimal polynomial of an element of a Galois field

Syntax pol = gfminpol(k,m,p)
pol = gfminpol(k,prim_poly,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the minpol function with Galois arrays. For
details, see “Minimal Polynomials” on page 12-33.

pol = gfminpol(k,m,p) finds the minimal polynomial of Ak over
GF(p), where p is a prime number, m is an integer greater than 1, and A
is a root of the default primitive polynomial for GF(p^m). The format of
the output is as follows:

• If k is a nonnegative integer, then pol is a row vector that gives the
coefficients of the minimal polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative
integers, then pol is a matrix having len rows; the rth row of pol
gives the coefficients of the minimal polynomial of Ak(r) in order of
ascending powers.

pol = gfminpol(k,prim_poly,p) is the same as the first syntax listed,
except that A is a root of the primitive polynomial for GF(pm) specified
by prim_poly. prim_poly is a row vector that gives the coefficients of
the degree-m primitive polynomial in order of ascending powers.

Examples The syntax gfminpol(k,m,p) is used in the sample code in
“Characterization of Polynomials” on page 13-17.

See Also gfprimdf, gfcosets, gfroots, Chapter 13, “Galois Fields of Odd
Characteristic”

15-148

gfmul

Purpose Multiply elements of a Galois field

Syntax c = gfmul(a,b,p)
c = gfmul(a,b,field)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), apply the .* operator to Galois arrays. For details,
see “Example: Multiplication” on page 12-15.

The gfmul function multiplies elements of a Galois field. (To multiply
polynomials over a Galois field, use gfconv instead.)

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b is
between 0 and p-1. p is a prime number. If a and b are matrices of the
same size, then the function treats each element independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a
prime number and m is a positive integer. a and b represent elements
of GF(pm) in exponential format relative to some primitive element of
GF(pm). field is the matrix listing all elements of GF(pm), arranged
relative to the same primitive element. c is the exponential format of
the product, relative to the same primitive element. See “Representing
Elements of Galois Fields” on page 13-4 for an explanation of these
formats. If a and b are matrices of the same size, then the function
treats each element independently.

Examples “Arithmetic in Galois Fields” on page 13-13 contains examples. Also,
the code below shows that

A A A2 4 6⋅ =
where A is a root of the primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);

15-149

gfmul

a = gfmul(2,4,field)

The output is

a =

6

See Also gfdiv, gfdeconv, gfadd, gfsub, gftuple, Chapter 13, “Galois Fields of
Odd Characteristic”

15-150

gfpretty

Purpose Display a polynomial in traditional format

Syntax gfpretty(a) gfpretty(a,st) gfpretty(a,st,n)

Description gfpretty(a) displays a polynomial in a traditional format, using X as
the variable and the entries of the row vector a as the coefficients in
order of ascending powers. The polynomial is displayed in order of
ascending powers. Terms having a zero coefficient are not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the
content of the string st is used as the variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that
the content of the string st is used as the variable instead of X, and each
line of the display has width n instead of the default value of 79.

Note For all syntaxes: If you do not use a fixed-width font, then the
spacing in the display might not look correct.

Examples The code below displays statements about the elements of GF(81).

p = 3; m = 4;
ii = randint(1,1,[1,p^m-2]); % Random exponent for prim element
primpolys = gfprimfd(m,'all',p);
[rows, cols] = size(primpolys);
jj = randint(1,1,[1,rows]); % Random primitive polynomial

disp('If A is a root of the primitive polynomial')
gfpretty(primpolys(jj,:)) % Polynomial in X
disp('then the element')
gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii
disp('can also be expressed as')
gfpretty(gftuple(ii,m,p),'A') % Polynomial in A

Below is a sample of the output.

15-151

gfpretty

If A is a root of the primitive polynomial

3 4
2 + 2 X + X

then the element

22
A

can also be expressed as

2 3
2 + A + A

See Also gftuple, gfprimdf, Chapter 13, “Galois Fields of Odd Characteristic”

15-152

gfprimck

Purpose Check whether a polynomial over a Galois field is primitive

Syntax ck = gfprimck(a,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the isprimitive function. For details, see
“Finding Primitive Polynomials” on page 12-10.

ck = gfprimck(a,p) returns a flag ck that indicates whether a
polynomial over GF(p) is irreducible or primitive. a is a row vector
that gives the coefficients of the polynomial in order of ascending
powers. Each coefficient is between 0 and p-1. If m is the degree of the
polynomial, then the output ck is

• -1 if a is not an irreducible polynomial

• 0 if a is irreducible but not a primitive polynomial for GF(pm)

• 1 if a is a primitive polynomial for GF(pm)

This function considers the zero polynomial to be "not irreducible" and
considers all polynomials of degree zero or one to be primitive.

Examples “Characterization of Polynomials” on page 13-17 contains examples.

Algorithm An irreducible polynomial over GF(p) of degree at least 2 is primitive if
and only if it does not divide -1 + xk for any positive integer k smaller
than pm-1.

See Also gfprimfd, gfprimdf, gftuple, gfminpol, gfadd, Chapter 13, “Galois
Fields of Odd Characteristic”

References [1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for
Digital Communications, New York, Plenum, 1981.

15-153

gfprimdf

Purpose Provide default primitive polynomials for a Galois field

Syntax pol = gfprimdf(m,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the primpoly function. For details, see “Finding
Primitive Polynomials” on page 12-10.

pol = gfprimdf(m,p) returns the row vector that gives the coefficients,
in order of ascending powers, of the default primitive polynomial for
GF(p^m). m is a positive integer and p is a prime number.

Examples The command below shows that 2 + x + x2 is the default primitive
polynomial for GF(52).

pol = gfprimdf(2,5)
pol =

2 1 1

The code below displays the default primitive polynomial for each of the
fields GF(3m), where m ranges between 3 and 5.

for m = 3:5
gfpretty(gfprimdf(m,3))

end

The output is below.

3
1 + 2 X + X

4
2 + X + X

15-154

gfprimdf

5
1 + 2 X + X

See Also gfprimck, gfprimfd, gftuple, gfminpol, Chapter 13, “Galois Fields of
Odd Characteristic”

15-155

gfprimfd

Purpose Find primitive polynomials for a Galois field

Syntax pol = gfprimfd(m,opt,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the primpoly function. For details, see “Finding
Primitive Polynomials” on page 12-10.

• If m = 1, then pol = [1 1].

• A polynomial is represented as a row containing the coefficients in
order of ascending powers.

pol = gfprimfd(m,opt,p) searches for one or more primitive
polynomials for GF(p^m), where p is a prime number and m is a positive
integer. If m = 1, then pol = [1 1]. If m > 1, then the output pol depends
on the argument opt as shown in the table below. Each polynomial
is represented in pol as a row containing the coefficients in order of
ascending powers.

opt Significance of pol Format of pol

'min' One primitive
polynomial for
GF(p^m) having the
smallest possible
number of nonzero
terms

The row vector
representing the
polynomial

'max' One primitive
polynomial for
GF(p^m) having the
greatest possible
number of nonzero
terms

The row vector
representing the
polynomial

15-156

gfprimfd

opt Significance of pol Format of pol

'all' All primitive
polynomials for
GF(p^m)

A matrix, each row of
which represents one
such polynomial

A positive integer All primitive
polynomials for
GF(p^m) that have
opt nonzero terms

A matrix, each row of
which represents one
such polynomial

Examples The code below seeks primitive polynomials for GF(81) having various
other properties. Notice that fourterms is empty because no primitive
polynomial for GF(81) has exactly four nonzero terms. Also notice that
fewterms represents a single polynomial having three terms, while
threeterms represents all of the three-term primitive polynomials for
GF(81).

p = 3; m = 4; % Work in GF(81).
fewterms = gfprimfd(m,'min',p)
threeterms = gfprimfd(m,3,p)
fourterms = gfprimfd(m,4,p)

The output is below.

fewterms =

2 1 0 0 1

threeterms =

2 1 0 0 1
2 2 0 0 1
2 0 0 1 1
2 0 0 2 1

15-157

gfprimfd

No primitive polynomial satisfies the given constraints.

fourterms =

[]

Algorithm gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max',
or omitted, then polynomials are constructed by converting decimal
integers to base p. Based on the decimal ordering, gfprimfd returns the
first polynomial it finds that satisfies the appropriate conditions.

See Also gfprimck, gfprimdf, gftuple, gfminpol, Chapter 13, “Galois Fields of
Odd Characteristic”

15-158

gfrank

Purpose Compute the rank of a matrix over a Galois field

Syntax rk = gfrank(A,p)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the rank function with Galois arrays. For
details, see “Computing Ranks” on page 12-24.

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where
p is a prime number.

Algorithm gfrank uses an algorithm similar to Gaussian elimination.

Examples In the code below, gfrank says that the matrix A has less than full rank.
This conclusion makes sense because the determinant of A is zero mod p.

A = [1 0 1;
2 1 0;
0 1 1];

p = 3;
det_a = det(A); % Ordinary determinant of A
detmodp = rem(det(A),p); % Determinant mod p
rankp = gfrank(A,p);
disp(['Determinant = ',num2str(det_a)])
disp(['Determinant mod p is ',num2str(detmodp)])
disp(['Rank over GF(p) is ',num2str(rankp)])

The output is below.

Determinant = 3
Determinant mod p is 0
Rank over GF(p) is 2

15-159

gfrepcov

Purpose Convert one binary polynomial representation to another

Syntax polystandard = gfrepcov(poly2)

Description Two logical ways to represent polynomials over GF(2) are listed below:

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

Each entry A_k is either one or zero.

2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this
toolbox, but there are some cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to
the first, for polynomials of degree at least 2. poly2 and polystandard
are row vectors. The entries of poly2 are distinct integers, and at least
one entry must exceed 1. Each entry of polystandard is either 0 or 1.

Note If poly2 is a binary row vector, then gfrepcov assumes that it is
already in Format 1 above and returns it unaltered.

Examples The command below converts the representation format of the
polynomial 1 + x2 + x5.

polystandard = gfrepcov([0 2 5])

15-160

gfrepcov

polystandard =

1 0 1 0 0 1

See Also gfpretty, Chapter 13, “Galois Fields of Odd Characteristic”

15-161

gfroots

Purpose Find the roots of a polynomial over a prime Galois field

Syntax rt = gfroots(f,m,p)
rt = gfroots(f,prim_poly,p)
[rt,rt_tuple] = gfroots(...)
[rt,rt_tuple,field] = gfroots(...)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), use the roots function with Galois arrays. For
details, see “Roots of Polynomials” on page 12-32.

For all syntaxes, f is a row vector that gives the coefficients, in order of
ascending powers, of a degree-d polynomial.

Note gfroots lists each root exactly once, ignoring multiplicities of
roots.

rt = gfroots(f,m,p) finds roots in GF(p^m) of the polynomial that
f represents. rt is a column vector each of whose entries is the
exponential format of a root. The exponential format is relative to a root
of the default primitive polynomial for GF(p^m).

rt = gfroots(f,prim_poly,p) finds roots in GF(pm) of the polynomial
that f represents. rt is a column vector each of whose entries is the
exponential format of a root. The exponential format is relative to a
root of the degree-m primitive polynomial for GF(pm) that prim_poly
represents.

[rt,rt_tuple] = gfroots(...) returns an additional matrix
rt_tuple, whose kth row is the polynomial format of the root rt(k).
The polynomial and exponential formats are both relative to the same
primitive element.

15-162

gfroots

[rt,rt_tuple,field] = gfroots(...) returns additional matrices
rt_tuple and field. rt_tuple is described in the paragraph above.
field gives the list of elements of the extension field. The list of
elements, the polynomial format, and the exponential format are all
relative to the same primitive element.

Note For a description of the various formats that gfroots uses, see
“Representing Elements of Galois Fields” on page 13-4.

Examples “Roots of Polynomials” on page 13-18 contains a description and
example of the use of gfroots.

As another example, the code below finds the polynomial format of the
roots of the primitive polynomial 2 + x3 + x4 for GF(81). It then displays
the roots in traditional form as polynomials in alph. (The output is
omitted here.) Because prim_poly is both the primitive polynomial and
the polynomial whose roots are sought, alph itself is a root.

p = 3; m = 4;
prim_poly = [2 0 0 1 1]; % A primitive polynomial for GF(81)
f = prim_poly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,prim_poly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)

gfpretty(rt_tuple(ii,:),'alpha')
end

See Also gfprimdf, Chapter 13, “Galois Fields of Odd Characteristic”

15-163

gfsub

Purpose Subtract polynomials over a Galois field

Syntax c = gfsub(a,b,p)
c = gfsub(a,b,p,len)
c = gfsub(a,b,field)

Description
Note This function performs computations in GF(pm) where p is odd.
To work in GF(2m), apply the - operator to Galois arrays of equal size.
For details, see “Example: Addition and Subtraction” on page 12-14.

c = gfsub(a,b,p) calculates a minus b, where a and b represent
polynomials over GF(p) and p is a prime number. a, b, and c are row
vectors that give the coefficients of the corresponding polynomials in
order of ascending powers. Each coefficient is between 0 and p-1. If a
and b are matrices of the same size, then the function treats each row
independently.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above,
except that it returns a row vector of length len. The output c is a
truncated or extended representation of the answer. If the row vector
corresponding to the answer has fewer than len entries (including
zeros), then extra zeros are added at the end; if it has more than len
entries, then entries from the end are removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are the
exponential format of two elements of GF(pm), relative to some primitive
element of GF(pm). p is a prime number and m is a positive integer.
field is the matrix listing all elements of GF(pm), arranged relative to
the same primitive element. c is the exponential format of the answer,
relative to the same primitive element. See “Representing Elements
of Galois Fields” on page 13-4 for an explanation of these formats. If
a and b are matrices of the same size, then the function treats each
element independently.

15-164

gfsub

Examples In the code below, differ is the difference of 2 + 3x + x2 and 4 + 2x + 3x2

over GF(5), and linpart is the degree-one part of differ.

differ = gfsub([2 3 1],[4 2 3],5)
linpart = gfsub([2 3 1],[4 2 3],5,2)

The output is

differ =

3 1 3

linpart =

3 1

The code below shows that A2 - A4 = A7, where A is a root of the primitive
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
d = gfsub(2,4,field)

The output is

d =

7

See Also gfadd, gfconv, gfmul, gfdeconv, gfdiv, gftuple, Chapter 13, “Galois
Fields of Odd Characteristic”

15-165

gftable

Purpose Generate a file to accelerate Galois field computations

Syntax gftable(m,prim_poly);

Description gftable(m,prim_poly) generates a file that can help accelerate
computations in the field GF(2^m) as described by the nondefault
primitive polynomial prim_poly. The integer m is between 1 and 16.
The integer prim_poly represents a primitive polynomial for GF(2^m)
using the format described in “Specifying the Primitive Polynomial” on
page 12-9. The function places the file, called userGftable.mat, in your
current working directory. If necessary, the function overwrites any
writable existing version of the file.

Note If prim_poly is the default primitive polynomial for GF(2^m)
listed in the table on the gf reference page, then this function has
no effect. A MAT-file in your MATLAB installation already includes
information that facilitates computations with respect to the default
primitive polynomial.

Examples In the example below, you would expect t3 to be similar to t1 and
significantly smaller than t2, assuming that you do not already have a
userGftable.mat file that includes the (m, prim_poly) pair (8, 501).

% Sample code to check how much gftable improves speed.
tic; a = gf(repmat([0:2^8-1],1000,1),8); b = a.^100; t1 = toc;
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t2 = toc;
gftable(8,501); % Include this primitive polynomial in the file.
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t3 = toc;

See Also gf, “Speed and Nondefault Primitive Polynomials” on page 12-38

15-166

gftrunc

Purpose Minimize the length of a polynomial representation

Syntax c = gftrunc(a)

Description c = gftrunc(a) truncates a row vector, a, that gives the coefficients of
a GF(p) polynomial in order of ascending powers. If a(k) = 0 whenever
k > d + 1, then the polynomial has degree d. The row vector c omits
these high-order zeros and thus has length d + 1.

Examples In the code below, zeros are removed from the end, but not from
the beginning or middle, of the row-vector representation of
x2 + 2x3 + 3x4 + 4x7 + 5x8.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])
c =

0 0 1 2 3 0 0 4 5

See Also gfadd, gfsub, gfconv, gfdeconv, gftuple, Chapter 13, “Galois Fields of
Odd Characteristic”

15-167

gftuple

Purpose Simplify or convert the format of elements of a Galois field

Syntax tp = gftuple(a,m,p)
tp = gftuple(a,prim_poly,p)
tp = gftuple(a,prim_poly,p,prim_ck)
[tp,expform] = gftuple(...)

Description
Note This function performs computations in GF(pm) where p is odd.
To perform equivalent computations in GF(2m), apply the .^ operator
and the log function to Galois arrays. For more information, see
“Example: Exponentiation” on page 12-17 and “Example: Elementwise
Logarithm” on page 12-18, respectively.

For All Syntaxes

gftuple serves to simplify the polynomial or exponential format of
Galois field elements, or to convert from one format to another. For
an explanation of the formats that gftuple uses, see “Representing
Elements of Galois Fields” on page 13-4.

In this discussion, the format of an element of GF(pm) is called
"simplest" if all exponents of the primitive element are

• Between 0 and m-1 for the polynomial format

• Either -Inf, or between 0 and pm-2, for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element
of a Galois field. The format of a determines how MATLAB interprets it:

• If a is a column of integers, then MATLAB interprets each row as an
exponential format of an element. Negative integers are equivalent
to -Inf in that they all represent the zero element of the field.

• If a has more than one column, then MATLAB interprets each row
as a polynomial format of an element. (Each entry of a must be an
integer between 0 and p-1.)

15-168

gftuple

The exponential or polynomial formats mentioned above are all relative
to a primitive element specified by the second input argument. The
second argument is described below.

For Specific Syntaxes

tp = gftuple(a,m,p) returns the simplest polynomial format of the
elements that a represents, where the kth row of tp corresponds to the
kth row of a. The formats are relative to a root of the default primitive
polynomial for GF(p^m). m is a positive integer and p is a prime number.
If possible, the default primitive polynomial is used to simplify the
polynomial formats.

tp = gftuple(a,prim_poly,p) returns the simplest polynomial format
of the element that a represents, where the kth row of tp corresponds
to the kth row of a. p is a prime number. The formats are relative to a
root of the primitive polynomial whose coefficients are given, in order of
ascending powers, by the row vector prim_poly. If possible, the function
uses this primitive polynomial to simplify the polynomial formats.

tp = gftuple(a,prim_poly,p,prim_ck) is the same as tp =
gftuple(a,prim_poly,p) except that gftuple checks whether
prim_poly represents a polynomial that is indeed primitive. If not, then
gftuple generates an error and tp is not returned. The input argument
prim_ck can be any number or string; only its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix
expform. The kth row of expform is the simplest exponential format
of the element that the kth row of a represents. All other features are
as described in earlier parts of this "Description" section, depending
on the input arguments.

Examples Some examples are in these subsections of Chapter 13, “Galois Fields of
Odd Characteristic”:

• “List of All Elements of a Galois Field” on page 13-5 (end of section)

• “Converting to Simplest Polynomial Format” on page 13-9

• “Converting to Simplest Exponential Format” on page 13-11

15-169

gftuple

As another example, the gftuple command below generates a list of
elements of GF(p^m), arranged relative to a root of the default primitive
polynomial. Some functions in this toolbox use such a list as an input
argument.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of
the input matrix. In the first command, a column vector is treated as a
sequence of elements expressed in exponential format. In the second
command, a row vector is treated as a single element expressed in
polynomial format.

tp1 = gftuple([0; 1],3,3)
tp2 = gftuple([0, 0, 0, 1],3,3)

The output is below.

tp1 =

1 0 0
0 1 0

tp2 =

2 1 0

The outputs reflect that, according to the default primitive polynomial
for GF(33), the relations below are true.

15-170

gftuple

Algorithm gftuple uses recursive callbacks to determine the exponential format.

See Also gfadd, gfmul, gfconv, gfdiv, gfdeconv, gfprimdf, Chapter 13, “Galois
Fields of Odd Characteristic”

15-171

gfweight

Purpose Calculate the minimum distance of a linear block code

Syntax wt = gfweight(genmat)
wt = gfweight(genmat,'gen')
wt = gfweight(parmat,'par')
wt = gfweight(genpoly,n)

Description The minimum distance, or minimum weight, of a linear block code
is defined as the smallest positive number of nonzero entries in any
n-tuple that is a codeword.

wt = gfweight(genmat) returns the minimum distance of the linear
block code whose generator matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the
linear block code whose generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the
linear block code whose parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the
cyclic code whose codeword length is n and whose generator polynomial
is represented by genpoly. genpoly is a row vector that gives the
coefficients of the generator polynomial in order of ascending powers.

Examples The commands below illustrate three different ways to compute the
minimum distance of a (7,4) cyclic code.

n = 7;
% Generator polynomial of (7,4) cyclic code
genpoly = cyclpoly(n,4);
[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen'),gfweight(parmat,'par'),...

gfweight(genpoly,n)]

The output is

15-172

gfweight

wts =

3 3 3

See Also hammgen, cyclpoly, bchgenpoly, “Block Coding” on page 6-2

15-173

hammgen

Purpose Produce parity-check and generator matrices for Hamming code

Syntax h = hammgen(m)
h = hammgen(m,pol)
[h,g] = hammgen(...)
[h,g,n,k] = hammgen(...)

Description For all syntaxes, the codeword length is n. n has the form 2m-1 for some
positive integer m greater than or equal to 3. The message length, k,
has the form n-m.

h = hammgen(m) produces an m-by-n parity-check matrix for a
Hamming code having codeword length n = 2^m-1. The input m is a
positive integer greater than or equal to 3. The message length of
the code is n-m. The binary primitive polynomial used to produce
the Hamming code is the default primitive polynomial for GF(2^m),
represented by gfprimdf(m).

h = hammgen(m,pol) produces an m-by-n parity-check matrix for a
Hamming code having codeword length n = 2^m-1. The input m is a
positive integer greater than or equal to 3. The message length of the
code is n-m. pol is a row vector that gives the coefficients, in order of
ascending powers, of the binary primitive polynomial for GF(2^m) that
is used to produce the Hamming code. hammgen produces an error if pol
represents a polynomial that is not, in fact, primitive.

[h,g] = hammgen(...) is the same as h = hammgen(...) except that
it also produces the k-by-n generator matrix g that corresponds to the
parity-check matrix h. k, the message length, equals n-m, or 2^m-1-m.

[h,g,n,k] = hammgen(...) is the same as [h,g] = hammgen(...)
except that it also returns the codeword length n and the message
length k.

Note If your value of m is less than 25 and if your primitive polynomial
is the default primitive polynomial for GF(2^m), then the syntax
hammgen(m) is likely to be faster than the syntax hammgen(m,pol).

15-174

hammgen

Examples The command below exhibits the parity-check and generator matrices
for a Hamming code with codeword length 7 = 23-1 and message length
4 = 7-3.

[h,g,n,k] = hammgen(3)

h =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

g =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

n =

7

k =

4

The command below, which uses 1 + x2 + x3 as the primitive polynomial
for GF(23), shows that the parity-check matrix depends on the choice
of primitive polynomial. Notice that h1 below is different from h in
the example above.

h1 = hammgen(3,[1 0 1 1])

15-175

hammgen

h1 =

1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

Algorithm Unlike gftuple, which processes one m-tuple at a time, hammgen
generates the entire sequence from 0 to 2^m-1. The computation
algorithm uses all previously computed values to produce the
computation result.

See Also encode, decode, gen2par, “Block Coding” on page 6-2

15-176

hank2sys

Purpose Convert a Hankel matrix to a linear system model

Syntax [num,den] = hank2sys(h,ini,tol)
[num,den,sv] = hank2sys(h,ini,tol)
[a,b,c,d] = hank2sys(h,ini,tol)
[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description [num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a
linear system transfer function with numerator num and denominator
den. The vectors num and den list the coefficients of their respective
polynomials in ascending order of powers of z-1. The argument ini
is the system impulse at time zero. If tol > 1, then tol is the order
of the conversion. If tol < 1, then tol is the tolerance in selecting
the conversion order based on the singular values. If you omit tol,
then its default value is 0.01. This conversion uses the singular value
decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists
the singular values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to
a corresponding linear system state-space model. a, b, c, and d are
matrices. The input parameters are the same as in the first syntax
above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax
above, except that sv is a vector that lists the singular values of h.

Examples h = hankel([1 0 1]);
[num,den,sv] = hank2sys(h,0,.01)

The output is

num =

0 1.0000 0.0000 1.0000

15-177

hank2sys

den =

1.0000 0.0000 0.0000 0.0000

sv =

1.6180
1.0000
0.6180

See Also rcosflt, hankel

15-178

heldeintrlv

Purpose Restore ordering of symbols permuted using helintrlv

Syntax [deintrlved,state] = heldeintrlv(data,col,ngrp,stp)
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state)
deintrlved = heldeintrlv(data,col,ngrp,stp,init_state)

Description [deintrlved,state] = heldeintrlv(data,col,ngrp,stp) restores
the ordering of symbols in data by placing them in an array row by row
and then selecting groups in a helical fashion to place in the output,
deintrlved. data must have col*ngrp elements. If data is a matrix
with multiple rows and columns, then it must have col*ngrp rows,
and the function processes the columns independently. state is a
structure that holds the final state of the array. state.value stores
input symbols that remain in the col columns of the array and do not
appear in the output.

The function uses the array internally for its computations. The array
has unlimited rows indexed by 1, 2, 3,..., and col columns. The function
initializes the top of the array with zeros. It then places col*ngrp
symbols from the input into the next ngrp rows of the array. The
function places symbols from the array in the output, intrlved, placing
ngrp symbols at a time; the kth group of ngrp symbols comes from the
kth column of the array, starting from row 1+(k-1)*stp. Some output
symbols are default values of 0 rather than input symbols; similarly,
some input symbols are left in the array and do not appear in the output.

[deintrlved,state] =
heldeintrlv(data,col,ngrp,stp,init_state)
initializes the array with the symbols contained in init_state.value
instead of zeros. The structure init_state is typically the state output
from a previous call to this same function, and is unrelated to the
corresponding interleaver. In this syntax, some output symbols are
default values of 0, some are input symbols from data, and some are
initialization values from init_state.value.

deintrlved = heldeintrlv(data,col,ngrp,stp,init_state) is
the same as the syntax above, except that it does not record the
deinterleaver’s final state. This syntax is appropriate for the last in a

15-179

heldeintrlv

series of calls to this function. However, if you plan to call this function
again to continue the deinterleaving process, then the syntax above is
more appropriate.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the helintrlv function, use
the same col, ngrp, and stp inputs in both functions. In that case,
the two functions are inverses in the sense that applying helintrlv
followed by heldeintrlv leaves data unchanged, after you take their
combined delay of col*ngrp*ceil(stp*(col-1)/ngrp) into account. To
learn more about delays of convolutional interleavers, see “Delays of
Convolutional Interleavers” on page 7-9.

Note Because the delay is an integer multiple of the number of
symbols in data, you must use heldeintrlv at least twice (possibly
more times, depending on the actual delay value) before the function
returns results that represent more than just the delay.

Examples The example below illustrates how to recover interleaved data, taking
into account the delay of the interleaver-deinterleaver pair.

col = 4; ngrp = 3; stp = 2; % Helical interleaver parameters
% Compute the delay of interleaver-deinterleaver pair.
delayval = col * ngrp * ceil(stp * (col-1)/ngrp);

len = col*ngrp; % Process this many symbols at one time.
data = randint(len,1,10); % Random symbols
data_padded = [data; zeros(delayval,1)]; % Pad with zeros.

% Interleave zero-padded data.
[i1,istate] = helintrlv(data_padded(1:len),col,ngrp,stp);
[i2,istate] = helintrlv(data_padded(len+1:2*len),col,ngrp,stp,istate);
i3 = helintrlv(data_padded(2*len+1:end),col,ngrp,stp,istate);

% Deinterleave.

15-180

heldeintrlv

[d1,dstate] = heldeintrlv(i1,col,ngrp,stp);
[d2,dstate] = heldeintrlv(i2,col,ngrp,stp,dstate);
d3 = heldeintrlv(i3,col,ngrp,stp,dstate);

% Check the results.
d0 = [d1; d2; d3]; % All the deinterleaved data
d0_trunc = d0(delayval+1:end); % Remove the delay.
ser = symerr(data,d0_trunc)

The output below shows that no symbol errors occurred.

ser =

0

See Also helintrlv, Chapter 7, “Interleaving”

15-181

helintrlv

Purpose Permute symbols using a helical array

Syntax intrlved = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)

Description intrlved = helintrlv(data,col,ngrp,stp) permutes the symbols in
data by placing them in an unlimited-row array in helical fashion and
then placing rows of the array in the output, intrlved. data must
have col*ngrp elements. If data is a matrix with multiple rows and
columns, then it must have col*ngrp rows, and the function processes
the columns independently.

The function uses the array internally for its computations. The array
has unlimited rows indexed by 1, 2, 3,..., and col columns. The function
partitions col*ngrp symbols from the input into consecutive groups of
ngrp symbols. The function places the kth group in the array along
column k, starting from row 1+(k-1)*stp. Positions in the array that do
not contain input symbols have default values of 0. The function places
col*ngrp symbols from the array in the output, intrlved, by reading
the first ngrp rows sequentially. Some output symbols are default
values of 0 rather than input symbols; similarly, some input symbols
are left in the array and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp) returns a
structure that holds the final state of the array. state.value stores
input symbols that remain in the col columns of the array and do not
appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)
initializes the array with the symbols contained in init_state.value.
The structure init_state is typically the state output from a previous
call to this same function, and is unrelated to the corresponding
deinterleaver. In this syntax, some output symbols are default values
of 0, some are input symbols from data, and some are initialization
values from init_state.value.

15-182

helintrlv

Examples The example below rearranges the integers from 1 to 24.

% Interleave some symbols. Record final state of array.
[i1,state] = helintrlv([1:12]',3,4,1);
% Interleave more symbols, remembering the symbols that
% were left in the array from the earlier command.
i2 = helintrlv([13:24]',3,4,1,state);

disp('Interleaved data:')
disp([i1,i2]')
disp('Values left in array after first interleaving operation:')
state.value{:}

During the successive calls to helintrlv, it internally creates the
three-column arrays

[1 0 0;
2 5 0;
3 6 9;
4 7 10;
0 8 11;
0 0 12]

and

[13 8 11;
14 17 12;
15 18 21;
16 19 22;
0 20 23;
0 0 24]

In the second array shown above, the 8, 11, and 12 are values left in the
array from the previous call to the function. Specifying the init_state
input in the second call to the function causes it to use those values
rather than default values of 0.

15-183

helintrlv

The output from this example is below. (The actual interleaved data is
a tall matrix, but has been transposed into a wide matrix for display
purposes.) The interleaved data comes from the top four rows of the
three-column arrays shown above. Notice that some of the symbols in
the first half of the interleaved data are default values of 0, some of the
symbols in the second half of the interleaved data were left in the array
from the first call to helintrlv, and some of the input symbols (20, 23,
and 24) do not appear in the interleaved data at all.

Interleaved data:
Columns 1 through 10

1 0 0 2 5 0 3 6 9 4
13 8 11 14 17 12 15 18 21 16

Columns 11 through 12

7 10
19 22

Values left in array after first interleaving operation:

ans =

[]

ans =

8

ans =

11 12

15-184

helintrlv

The example on the reference page for heldeintrlv also uses this
function.

See Also heldeintrlv, Chapter 7, “Interleaving”

15-185

helscandeintrlv

Purpose Restore ordering of symbols in a helical pattern

Syntax deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)

Description deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep) rearranges
the elements in data by filling a temporary matrix with the elements in
a helical fashion and then sending the matrix contents to the output
row by row. Nrows and Ncols are the dimensions of the temporary
matrix. hstep is the slope of the diagonal, that is, the amount by which
the row index increases as the column index increases by one. hstep
must be a nonnegative integer less than Nrows.

Helical fashion means that the function places input elements along
diagonals of the temporary matrix. The number of elements in each
diagonal is exactly Ncols, after the function wraps past the edges of the
matrix when necessary. The function traverses diagonals so that the
row index and column index both increase. Each diagonal after the first
one begins one row below the first element of the previous diagonal.

If data is a vector, then it must have Nrows*Ncols elements. If
data is a matrix with multiple rows and columns, then data must
have Nrows*Ncols rows and the function processes the columns
independently.

To use this function as an inverse of the helscanintrlv function,
use the same Nrows, Ncols, and hstep inputs in both functions. In
that case, the two functions are inverses in the sense that applying
helscanintrlv followed by helscandeintrlv leaves data unchanged.

Examples The command below rearranges a vector using a 3-by-4 temporary
matrix and diagonals of slope 1.

d = helscandeintrlv(1:12,3,4,1)
d =

Columns 1 through 10

1 10 7 4 5 2 11 8 9 6

15-186

helscandeintrlv

Columns 11 through 12

3 12

Internally, the function creates the 3-by-4 temporary matrix

[1 10 7 4;
5 2 11 8;
9 6 3 12]

using length-4 diagonals. The function then sends the elements, row by
row, to the output d.

See Also helscanintrlv, Chapter 7, “Interleaving”

15-187

helscanintrlv

Purpose Reorder symbols in a helical pattern

Syntax intrlvd = helscanintrlv(data,Nrows,Ncols,hstep)

Description intrlvd = helscanintrlv(data,Nrows,Ncols,hstep) rearranges the
elements in data by filling a temporary matrix with the elements row
by row and then sending the matrix contents to the output in a helical
fashion. Nrows and Ncols are the dimensions of the temporary matrix.
hstep is the slope of the diagonal, that is, the amount by which the row
index increases as the column index increases by one. hstep must be a
nonnegative integer less than Nrows.

Helical fashion means that the function selects elements along
diagonals of the temporary matrix. The number of elements in each
diagonal is exactly Ncols, after the function wraps past the edges of the
matrix when necessary. The function traverses diagonals so that the
row index and column index both increase. Each diagonal after the first
one begins one row below the first element of the previous diagonal.

If data is a vector, then it must have Nrows*Ncols elements. If
data is a matrix with multiple rows and columns, then data must
have Nrows*Ncols rows and the function processes the columns
independently.

Examples The command below rearranges a vector using diagonals of two
different slopes.

i1 = helscanintrlv(1:12,3,4,1) % Slope of diagonal is 1.
i2 = helscanintrlv(1:12,3,4,2) % Slope of diagonal is 2.

The output is below.

i1 =

Columns 1 through 10

1 6 11 4 5 10 3 8 9 2

15-188

helscanintrlv

Columns 11 through 12

7 12

i2 =

Columns 1 through 10

1 10 7 4 5 2 11 8 9 6

Columns 11 through 12

3 12

In each case, the function internally creates the temporary 3-by-4
matrix

[1 2 3 4;
5 6 7 8;
9 10 11 12]

To form i1, the function forms each slope-one diagonal by moving one
row down and one column to the right. The first diagonal contains 1,
6, 11, and 4, while the second diagonal starts with 5 because that is
beneath 1 in the temporary matrix.

To form i2, the function forms each slope-two diagonal by moving two
rows down and one column to the right. The first diagonal contains 1,
10, 7, and 4, while the second diagonal starts with 5 because that is
beneath 1 in the temporary matrix.

See Also helscandeintrlv, Chapter 7, “Interleaving”

15-189

hilbiir

Purpose Design a Hilbert transform IIR filter

Syntax hilbiir
hilbiir(ts)
hilbiir(ts,dly)
hilbiir(ts,dly,bandwidth)
hilbiir(ts,dly,bandwidth,tol)
[num,den] = hilbiir(...)
[num,den,sv] = hilbiir(...)
[a,b,c,d] = hilbiir(...)
[a,b,c,d,sv] = hilbiir(...)

Description The function hilbiir designs a Hilbert transform filter. The output is
either

• A plot of the filter’s impulse response, or

• A quantitative characterization of the filter, using either a transfer
function model or a state-space model

Background Information

An ideal Hilbert transform filter has the transfer function H(s) = -jsgn(s),
where sgn(.) is the signum function (sign in MATLAB). The impulse
response of the Hilbert transform filter is

Because the Hilbert transform filter is a noncausal filter, the hilbiir
function introduces a group delay, dly. A Hilbert transform filter with
this delay has the impulse response

15-190

hilbiir

Choosing a Group Delay Parameter

The filter design is an approximation. If you provide the filter’s group
delay as an input argument, then these two suggestions can help
improve the accuracy of the results:

• Choose the sample time ts and the filter’s group delay dly so that
dly is at least a few times larger than ts and rem(dly,ts) = ts/2.
For example, you can set ts to 2*dly/N, where N is a positive integer.

• At the point t = dly, the impulse response of the Hilbert transform
filter can be interpreted as 0, -Inf, or Inf. If hilbiir encounters this
point, then it sets the impulse response there to zero. To improve
accuracy, avoid the point t = dly.

Syntaxes for Plots

Each of these syntaxes produces a plot of the impulse response of the
filter that the hilbiir function designs, as well as the impulse response
of a corresponding ideal Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert
transform filter with a 1-second group delay. The sample time is 2/7
seconds. In this particular design, the tolerance index is 0.05. The
plot also displays the impulse response of the ideal Hilbert transform
filter with a 1-second group delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert
transform filter with a sample time of ts seconds and a group delay of
ts*7/2 seconds. The tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter having a sample
time of ts seconds and a group delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the
filter’s group delay is dly for both the ideal filter and the filter that
hilbiir designs. See Choosing a Group Delay Parameter on page 191
above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except
that bandwidth specifies the assumed bandwidth of the input signal

15-191

hilbiir

and that the filter design might use a compensator for the input signal.
If bandwidth = 0 or bandwidth > 1/(2*ts), then hilbiir does not use
a compensator.

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above,
except that tol is the tolerance index. If tol < 1, then the order of
the filter is determined by

truncated-singular-value
maximum-singular-value

< tol

If tol > 1, then the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities

Each of these syntaxes produces quantitative information about the
filter that hilbiir designs, but does not produce a plot. The input
arguments for these syntaxes (if you provide any) are the same as those
described in the Syntaxes for Plots on page 191 section above.

[num,den] = hilbiir(...) outputs the numerator and denominator
of the IIR filter’s transfer function.

[num,den,sv] = hilbiir(...) outputs the numerator and
denominator of the IIR filter’s transfer function, and the singular values
of the Hankel matrix that hilbiir uses in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space
model of the designed Hilbert transform filter. a, b, c, and d are
matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space
model of the designed Hilbert transform filter, and the singular values
of the Hankel matrix that hilbiir uses in the computation.

Algorithm The hilbiir function calculates the impulse response of the ideal
Hilbert transform filter response with a group delay. It fits the response
curve using a singular-value decomposition method. See the book by
Kailath listed below.

15-192

hilbiir

Examples For an example using the function’s default values, type one of the
following commands at the MATLAB prompt.

hilbiir
[num,den] = hilbiir

See Also grpdelay, rcosiir, Chapter 9, “Special Filters”

References [1] Kailath, Thomas, Linear Systems, Englewood Cliffs, N.J.,
Prentice-Hall, 1980.

15-193

huffmandeco

Purpose Huffman decoder

Syntax dsig = huffmandeco(comp,dict)

Description dsig = huffmandeco(comp,dict) decodes the numeric Huffman code
vector comp using the code dictionary dict. The argument dict is an
N-by-2 cell array, where N is the number of distinct possible symbols in
the original signal that was encoded as comp. The first column of dict
represents the distinct symbols and the second column represents the
corresponding codewords. Each codeword is represented as a numeric
row vector, and no codeword in dict is allowed to be the prefix of any
other codeword in dict. You can generate dict using the huffmandict
function and comp using the huffmanenco function. If all signal values
in dict are numeric, then dsig is a vector; if any signal value in dict is
alphabetical, then dsig is a one-dimensional cell array.

Examples The example below encodes and then decodes a vector of random data
that has a prescribed probability distribution.

symbols = [1:6]; % Distinct symbols that data source can produce
p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution
[dict,avglen] = huffmandict(symbols,p); % Create dictionary.
actualsig = randsrc(1,100,[symbols; p]); % Create data using p.
comp = huffmanenco(actualsig,dict); % Encode the data.
dsig = huffmandeco(comp,dict); % Decode the Huffman code.
isequal(actualsig,dsig) % Check whether the decoding is correct.

The output below indicates that the decoder successfully recovered the
data in actualsig.

ans =

1

See Also huffmandict, huffmanenco, “Huffman Coding” on page 5-14

15-194

huffmandeco

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.

15-195

huffmandict

Purpose Generate Huffman code dictionary for a source with known probability
model

Syntax [dict,avglen] = huffmandict(symbols,p)
[dict,avglen] = huffmandict(symbols,p,N)
[dict,avglen] = huffmandict(symbols,p,N,variance)

Description For All Syntaxes

The huffmandict function generates a Huffman code dictionary
corresponding to a source with a known probability model. The required
inputs are

• symbols, which lists the distinct signal values that the source
produces. It can have the form of a numeric vector, numeric cell
array, or alphanumeric cell array. If it is a cell array, then it must be
either a row or a column.

• p, a probability vector whose kth element is the probability with
which the source produces the kth element of symbols. The length of
p must equal the length of symbols.

The outputs of huffmandict are

• dict, a two-column cell array in which the first column lists the
distinct signal values from symbols and the second column lists the
corresponding Huffman codewords. In the second column, each
Huffman codeword is represented as a numeric row vector.

• avglen, the average length among all codewords in the dictionary,
weighted according to the probabilities in the vector p.

For Specific Syntaxes

[dict,avglen] = huffmandict(symbols,p) generates a binary
Huffman code dictionary using the maximum variance algorithm.

[dict,avglen] = huffmandict(symbols,p,N) generates an N-ary
Huffman code dictionary using the maximum variance algorithm. N is

15-196

huffmandict

an integer between 2 and 10 that must not exceed the number of source
symbols whose probabilities appear in the vector p.

[dict,avglen] = huffmandict(symbols,p,N,variance) generates an
N-ary Huffman code dictionary with the minimum variance if variance
is 'min' and the maximum variance if variance is 'max'. N is an integer
between 2 and 10 that must not exceed the length of the vector p.

Examples symbols = [1:5];
p = [.3 .3 .2 .1 .1];
[dict,avglen] = huffmandict(symbols,p)
samplecode = dict{5,2} % Codeword for fifth signal value

The output is below, where the first column of dict lists the values in
symbols and the second column lists the corresponding codewords.

dict =

[1] [1x2 double]
[2] [1x2 double]
[3] [1x2 double]
[4] [1x3 double]
[5] [1x3 double]

avglen =

2.2000

samplecode =

1 1 0

See Also huffmanenco, huffmandeco, “Huffman Coding” on page 5-14

15-197

huffmandict

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.

15-198

huffmanenco

Purpose Huffman encoder

Syntax comp = huffmanenco(sig,dict)

Description comp = huffmanenco(sig,dict) encodes the signal sig using the
Huffman codes described by the code dictionary dict. The argument
sig can have the form of a numeric vector, numeric cell array, or
alphanumeric cell array. If sig is a cell array, then it must be either a
row or a column. dict is an N-by-2 cell array, where N is the number
of distinct possible symbols to be encoded. The first column of dict
represents the distinct symbols and the second column represents the
corresponding codewords. Each codeword is represented as a numeric
row vector, and no codeword in dict may be the prefix of any other
codeword in dict. You can generate dict using the huffmandict
function.

Examples The example below encodes a vector of random data that has a
prescribed probability distribution.

symbols = [1:6]; % Distinct symbols that data source can produce
p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution
[dict,avglen] = huffmandict(symbols,p); % Create dictionary.
actualsig = randsrc(100,1,[symbols; p]); % Create data using p.
comp = huffmanenco(actualsig,dict); % Encode the data.

See Also huffmandict, huffmandeco, “Huffman Coding” on page 5-14

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.

15-199

ifft

Purpose Inverse discrete Fourier transform

Syntax ifft(x)

Description ifft(x) is the inverse discrete Fourier transform (DFT) of the Galois
vector x. If x is in the Galois field GF(2m), then the length of x must
be 2m-1.

Examples For an example using ifft, see the reference page for fft.

Limitations The Galois field over which this function works must have 256 or fewer
elements. In other words, x must be in the Galois field GF(2m), where
m is an integer between 1 and 8.

Algorithm If x is a column vector, then ifft applies dftmtx to the multiplicative
inverse of the primitive element of the Galois field and multiplies the
resulting matrix by x.

See Also fft, dftmtx, “Signal Processing Operations in Galois Fields” on page
12-27

15-200

intdump

Purpose Integrate and dump

Syntax y = intdump(x,nsamp)

Description y = intdump(x,nsamp) integrates the signal x over a symbol period and
outputs one value for that symbol period. A symbol period consists
of nsamp samples. If x contains multiple symbols, then the function
processes the symbols independently. If x is a matrix with multiple
rows, then the function treats each column as a channel and processes
the columns independently.

Examples An example in “Combining Pulse Shaping and Filtering with
Modulation” on page 8-11 uses this function in conjunction with
modulation.

The code below processes two independent channels, each containing
three symbols of data. Each symbol contains four samples.

nsamp = 4; % Number of samples per symbol
ch1 = randint(3*nsamp,1,2,68521); % Random binary channel
ch2 = rectpulse([1 2 3]',nsamp); % Rectangular pulses
x = [ch1 ch2]; % Two-channel signal
y = intdump(x,nsamp)

The output is below. Each column corresponds to one channel, and each
row corresponds to one symbol.

y =

0.5000 1.0000
0.5000 2.0000
1.0000 3.0000

See Also rectpulse

15-201

intrlv

Purpose Reorder sequence of symbols

Syntax intrlvd = intrlv(data,elements)

Description intrlvd = intrlv(data,elements) rearranges the elements of data
without repeating or omitting any elements. If data is a length-N vector
or an N-row matrix, then elements is a length-N vector that permutes
the integers from 1 to N. The sequence in elements is the sequence in
which elements from data or its columns appear in intrlvd. If data is a
matrix with multiple rows and columns, then the function processes
the columns independently.

Examples The command below rearranges the elements of a vector. Your output
might differ because the permutation vector is random in this example.

p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p)

The output is below.

a =

10 90 60 30 50 80 100 20 70 40

The command below rearranges each of two columns of a matrix.

b = intrlv([.1 .2 .3 .4 .5; .2 .4 .6 .8 1]',[2 4 3 5 1])
b =

0.2000 0.4000
0.4000 0.8000
0.3000 0.6000
0.5000 1.0000
0.1000 0.2000

See Also deintrlv, Chapter 7, “Interleaving”

15-202

isprimitive

Purpose True for a primitive polynomial for a Galois field

Syntax isprimitive(a)

Description isprimitive(a) returns 1 if the polynomial that a represents is
primitive for the Galois field GF(2m), and 0 otherwise. The input a can
represent the polynomial using one of these formats:

• A nonnegative integer less than 217. The binary representation of
this integer indicates the coefficients of the polynomial. In this case,
m is floor(log2(a)).

• A Galois row vector in GF(2), listing the coefficients of the polynomial
in order of descending powers. In this case, m is the order of the
polynomial represented by a.

Examples The example below finds all primitive polynomials for GF(8) and then
checks using isprimitive whether specific polynomials are primitive.

a = primpoly(3,'all','nodisplay'); % All primitive polys for GF(8)

isp1 = isprimitive(13) % 13 represents a primitive polynomial.

isp2 = isprimitive(14) % 14 represents a nonprimitive polynomial.

The output is below. If you examine the vector a, then notice that isp1
is true because 13 is an element in a, while isp2 is false because 14 is
not an element in a.

isp1 =

1

isp2 =

0

15-203

isprimitive

See Also primpoly, Chapter 12, “Galois Field Computations”

15-204

istrellis

Purpose True for a valid trellis structure

Syntax [isok,status] = istrellis(s)

Description [isok,status] = istrellis(s) checks if the input s is a valid trellis
structure. If the input is a valid trellis structure, then isok is 1 and
status is an empty string. Otherwise, isok is 0 and status is a string
that indicates why s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as
in the table below.

Fields of a Valid Trellis Structure for a Rate k/n Code

Field in Trellis
Structure

Dimensions Meaning

numInputSymbols Scalar Number of input
symbols to the
encoder: 2k

numOutputSymbols Scalar Number of output
symbols from the
encoder: 2n

numStates Scalar Number of states in
the encoder

nextStates numStates-by-2k

matrix
Next states for all
combinations of
current state and
current input

outputs numStates-by-2k

matrix
Outputs (in octal)
for all combinations
of current state and
current input

In the nextStates matrix, each entry is an integer between 0 and
numStates-1. The element in the sth row and uth column denotes the

15-205

istrellis

next state when the starting state is s-1 and the input bits have decimal
representation u-1. To convert the input bits to a decimal value, use
the first input bit as the most significant bit (MSB). For example, the
second column of the nextStates matrix stores the next states when
the current set of input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1,
then the shift register that receives the first input stream in the encoder
provides the least significant bits in the state number, while the shift
register that receives the last input stream in the encoder provides the
most significant bits in the state number.

In the outputs matrix, the element in the sth row and uth column
denotes the encoder’s output when the starting state is s-1 and the
input bits have decimal representation u-1. To convert to decimal value,
use the first output bit as the MSB.

Examples These commands assemble the fields into a very simple trellis structure,
and then verify the validity of the trellis structure.

trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)

The output is below.

isok =

1

status =

''

15-206

istrellis

Another example of a trellis is in “Trellis Description of a Convolutional
Encoder” on page 6-34.

See Also poly2trellis, struct, convenc, vitdec, “Convolutional Coding” on
page 6-30

15-207

lineareq

Purpose Construct a linear equalizer object

Syntax eqobj = lineareq(nweights,alg)
eqobj = lineareq(nweights,alg,sigconst)
eqobj = lineareq(nweights,alg,sigconst,nsamp)

Description The lineareq function creates an equalizer object that you can use
with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Using Adaptive Equalizer
Functions and Objects” on page 11-8.

eqobj = lineareq(nweights,alg) constructs a symbol-spaced linear
equalizer object. The equalizer has nweights complex weights, which
are initially all zeros. alg describes the adaptive algorithm that the
equalizer uses; you should create alg using any of these functions:
lms, signlms, normlms, varlms, rls, or cma. The signal constellation
of the desired output is [-1 1], which corresponds to binary phase
shift keying (BPSK).

eqobj = lineareq(nweights,alg,sigconst) specifies the signal
constellation vector of the desired output.

eqobj = lineareq(nweights,alg,sigconst,nsamp) constructs a
fractionally spaced linear equalizer object. The equalizer has nweights
complex weights spaced at T/nsamp, where T is the symbol period and
nsamp is a positive integer. Note that nsamp = 1 corresponds to a
symbol-spaced equalizer.

Properties

The table below describes the properties of the linear equalizer object.
To learn how to view or change the values of a linear equalizer object,
see “Accessing Properties of an Equalizer” on page 11-14.

Tip To initialize or reset the equalizer object eqobj, enter reset(eqobj).

15-208

lineareq

Property Description

EqType Fixed value, 'Linear Equalizer'

AlgType Name of the adaptive algorithm
represented by alg

nWeights Number of weights

nSampPerSym Number of input samples per
symbol (equivalent to nsamp input
argument). This value relates
to both the equalizer structure
(See the use of K in “Fractionally
Spaced Equalizers” on page 11-5.)
and an assumption about the
signal to be equalized.

RefTap (except for CMA
equalizers)

Reference tap index, between 1
and nWeights. Setting this to a
value greater than 1 effectively
delays the reference signal and
the output signal by RefTap-1
with respect to the equalizer’s
input signal.

SigConst Signal constellation, a vector
whose length is typically a power
of 2

Weights Vector of complex coefficients.
This is the set of wi values in
the schematic in “Symbol-Spaced
Equalizers” on page 11-3.

WeightInputs Vector of tap weight inputs. This
is the set of ui values in the
schematic in “Symbol-Spaced
Equalizers” on page 11-3.

15-209

lineareq

Property Description

ResetBeforeFiltering If 1, each call to equalize
resets the state of eqobj before
equalizing. If 0, the equalization
process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer
processed since the last reset.
When you create or reset eqobj,
this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the
adaptive algorithm function
that created alg: lms, signlms,
normlms, varlms, rls, or cma.

Relationships Among Properties

If you change nWeights, then MATLAB maintains consistency in the
equalizer object by adjusting the values of the properties listed below.

Property Adjusted Value

Weights zeros(1,nWeights)

WeightInputs zeros(1,nWeights)

StepSize
(Variable-step-size LMS
equalizers)

InitStep*ones(1,nWeights)

InvCorrMatrix (RLS
equalizers)

InvCorrInit*eye(nWeights)

An example illustrating relationships among properties is in “Linked
Properties of an Equalizer Object” on page 11-14.

Examples For examples that use this function, see “Equalizing Using a Training
Sequence” on page 11-17, “Example: Equalizing Multiple Times,

15-210

lineareq

Varying the Mode” on page 11-20, and “Example: Adaptive Equalization
Within a Loop” on page 11-23.

See Also lms, signlms, normlms, varlms, rls, cma, dfe, equalize, Chapter 11,
“Equalizers”

15-211

lloyds

Purpose Optimize quantization parameters using the Lloyd algorithm

Syntax [partition,codebook] = lloyds(training_set,initcodebook)
[partition,codebook] = lloyds(training_set,len)
[partition,codebook] = lloyds(training_set,...,tol)
[partition,codebook,distor] = lloyds(...)
[partition,codebook,distor,reldistor] = lloyds(...)

Description [partition,codebook] = lloyds(training_set,initcodebook)
optimizes the scalar quantization parameters partition and codebook
for the training data in the vector training_set. initcodebook, a
vector of length at least 2, is the initial guess of the codebook values.
The output codebook is a vector of the same length as initcodebook.
The output partition is a vector whose length is one less than the
length of codebook.

See “Representing Partitions” on page 5-2, “Representing Codebooks”
on page 5-2, or the reference page for quantiz in this chapter, for a
description of the formats of partition and codebook.

Note lloyds optimizes for the data in training_set. For best results,
training_set should be similar to the data that you plan to quantize.

[partition,codebook] = lloyds(training_set,len) is the same
as the first syntax, except that the scalar argument len indicates the
size of the vector codebook. This syntax does not include an initial
codebook guess.

[partition,codebook] = lloyds(training_set,...,tol) is the
same as the two syntaxes above, except that tol replaces 10-7 in
condition The relative change in distortion between iterations is less
than 10-7.
on page 214 of the algorithm description below.

[partition,codebook,distor] = lloyds(...) returns the final
mean square distortion in the variable distor.

15-212

lloyds

[partition,codebook,distor,reldistor] = lloyds(...) returns a
value reldistor that is related to the algorithm’s termination. In case
The relative change in distortion between iterations is less than 10-7.
on page 214 of Algorithm on page 214 below, reldistor is the relative
change in distortion between the last two iterations. In case The
distortion is less than eps*max(training_set), where eps is the
MATLAB floating-point relative accuracy.
on page 214 , reldistor is the same as distor.

Examples The code below optimizes the quantization parameters for a sinusoidal
transmission via a 3-bit channel. Because the typical data is sinusoidal,
training_set is a sampled sine wave. Because the channel can
transmit 3 bits at a time, lloyds prepares a codebook of length 23.

% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]*pi/500);
[partition,codebook] = lloyds(x,2^3)

The output is below.

partition =

Columns 1 through 6

-0.8540 -0.5973 -0.3017 0.0031 0.3077 0.6023

Column 7

0.8572

codebook =

Columns 1 through 6

-0.9504 -0.7330 -0.4519 -0.1481 0.1558 0.4575

15-213

lloyds

Columns 7 through 8

0.7372 0.9515

Algorithm lloyds uses an iterative process to try to minimize the mean square
distortion. The optimization processing ends when either

1 The relative change in distortion between iterations is less than 10-7.

2 The distortion is less than eps*max(training_set), where eps is the
MATLAB floating-point relative accuracy.

See Also quantiz, dpcmopt, Chapter 5, “Source Coding”

References [1] Lloyd, S. P., "Least Squares Quantization in PCM," IEEE
Transactions on Information Theory, Vol IT-28, March, 1982, pp.
129-137.

[2] Max, J., "Quantizing for Minimum Distortion," IRE Transactions on
Information Theory, Vol. IT-6, March, 1960, pp. 7-12.

15-214

lms

Purpose Construct a least mean square (LMS) adaptive algorithm object

Syntax alg = lms(stepsize)
alg = lms(stepsize,leakagefactor)

Description The lms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing
a signal, see “Using Adaptive Equalizer Functions and Objects” on
page 11-8.

alg = lms(stepsize) constructs an adaptive algorithm object based on
the least mean square (LMS) algorithm with a step size of stepsize.

alg = lms(stepsize,leakagefactor) sets the leakage factor of the
LMS algorithm. leakagefactor must be between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, while a value of
0 corresponds to a memoryless update algorithm.

Properties

The table below describes the properties of the LMS adaptive algorithm
object. To learn how to view or change the values of an adaptive
algorithm object, see “Accessing Properties of an Adaptive Algorithm”
on page 11-12.

Property Description

AlgType Fixed value, 'LMS'

StepSize LMS step size parameter, a
nonnegative real number

LeakageFactor LMS leakage factor, a real
number between 0 and 1

Examples For examples that use this function, see “Equalizing Using a Training
Sequence” on page 11-17, “Example: Equalizing Multiple Times,

15-215

lms

Varying the Mode” on page 11-20, and “Example: Adaptive Equalization
Within a Loop” on page 11-23.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes” on page 11-3, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set
of weights, w, this adaptive algorithm creates the new set of weights
given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

See Also signlms, normlms, varlms, rls, cma, lineareq, dfe, equalize, Chapter
11, “Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

15-216

log

Purpose Logarithm in a Galois field

Syntax y = log(x)

Description y = log(x) computes the logarithm of each element in the Galois
array x. That is, y is an integer array that solves the equation A.^y
= x, where A is the primitive element used to represent elements
in x. More explicitly, the base A of the logarithm is gf(2,x.m) or
gf(2,x.m,x.prim_poly). All elements in x must be nonzero because
the logarithm of zero is undefined.

Examples The code below illustrates how the logarithm operation inverts
exponentiation.

m = 4; x = gf([8 1 6; 3 5 7; 4 9 2],m);
y = log(x);
primel = gf(2,m); % Primitive element in the field
z = primel .^ y; % This is now the same as x.
ck = isequal(x,z)

The output is

ck =

1

The code below shows that the logarithm of 1 is 0 and that the logarithm
of the base (primel) is 1.

m = 4; primel = gf(2,m);
yy = log([1, primel])

The output is

yy =

0 1

15-217

marcumq

Purpose Generalized Marcum Q function

Syntax Q = marcumq(a,b)
Q = marcumq(a,b,m)

Description Q = marcumq(a,b) computes the Marcum Q function of a and b,
defined by

where a and b are nonnegative real numbers. In this expression, I0 is
the modified Bessel function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

where a and b are nonnegative real numbers, and m is a nonnegative
integer. In this expression, Im-1 is the modified Bessel function of the
first kind of order m-1.

See Also besseli

References [1] Cantrell, P. E., and A. K. Ojha, "Comparison of Generalized
Q-Function Algorithms," IEEE Transactions on Information Theory,
Vol. IT-33, July, 1987, pp. 591-596.

[2] Marcum, J. I., "A Statistical Theory of Target Detection by Pulsed
Radar: Mathematical Appendix," RAND Corporation, Santa Monica,
CA, Research Memorandum RM-753, July 1, 1948. Reprinted in IRE
Transactions on Information Theory, Vol. IT-6, April, 1960, pp. 59-267.

15-218

marcumq

[3] McGee, W. F., "Another Recursive Method of Computing the Q
Function," IEEE Transactions on Information Theory, vol. IT-16, July,
1970, pp. 500-501.

15-219

mask2shift

Purpose Convert mask vector to shift for a shift register configuration

Syntax shift = mask2shift(prpoly,mask)

Description shift = mask2shift(prpoly,mask) returns the shift that is equivalent
to a mask, for a linear feedback shift register whose connections are
specified by the primitive polynomial prpoly. The prpoly input can
have one of these formats:

• A binary vector that lists the coefficients of the primitive polynomial
in order of descending powers

• An integer scalar whose binary representation gives the coefficients
of the primitive polynomial, where the least significant bit is the
constant term

The mask input is a binary vector whose length is the degree of the
primitive polynomial.

Note To save time, mask2shift does not check that prpoly is primitive.
If it is not primitive, then the output is not meaningful. To find
primitive polynomials, use primpoly or see [2].

For more information about how masks and shifts are related to
pseudonoise sequence generators, see shift2mask.

Definition of Equivalent Shift

If A is a root of the primitive polynomial and m(A) is the mask
polynomial evaluated at A, then the equivalent shift s solves the
equation As = m(A). To interpret the vector mask as a polynomial, treat
mask as a list of coefficients in order of descending powers.

Examples The first command below converts a mask of x3 + 1 into an equivalent
shift, for the linear feedback shift register whose connections are
specified by the primitive polynomial x4 + x3 + 1. The second command

15-220

mask2shift

shows that a mask of 1 is equivalent to a shift of 0. In both cases,
notice that the length of the mask vector is one less than the length of
the prpoly vector.

s = mask2shift([1 1 0 0 1],[1 0 0 1])
s2 = mask2shift([1 1 0 0 1],[0 0 0 1])

The output is below.

s =

4

s2 =

0

See Also shift2mask, log, isprimitive, primpoly

References [1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook,
Boston, Artech House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum
Communications Handbook, New York, McGraw-Hill, 1994.

15-221

matdeintrlv

Purpose Restore ordering of symbols by filling a matrix by columns and
emptying it by rows

Syntax deintrlvd = matdeintrlv(data,Nrows,Ncols)

Description deintrlvd = matdeintrlv(data,Nrows,Ncols) rearranges the
elements in data by filling a temporary matrix with the elements
column by column and then sending the matrix contents, row by row,
to the output. Nrows and Ncols are the dimensions of the temporary
matrix. If data is a vector, then it must have Nrows*Ncols elements.
If data is a matrix with multiple rows and columns, then data must
have Nrows*Ncols rows and the function processes the columns
independently.

To use this function as an inverse of the matintrlv function, use the
same Nrows and Ncols inputs in both functions. In that case, the two
functions are inverses in the sense that applying matintrlv followed by
matdeintrlv leaves data unchanged.

Examples The code below illustrates the inverse relationship between matintrlv
and matdeintrlv.

Nrows = 2; Ncols = 3;
data = [1 2 3 4 5 6; 2 4 6 8 10 12]';
a = matintrlv(data,Nrows,Ncols); % Interleave.
b = matdeintrlv(a,Nrows,Ncols) % Deinterleave.

The output below shows that b is the same as data.

b =

1 2
2 4
3 6
4 8
5 10
6 12

15-222

matdeintrlv

See Also matintrlv, Chapter 7, “Interleaving”

15-223

matintrlv

Purpose Reorder symbols by filling a matrix by rows and emptying it by columns

Syntax intrlvd = matintrlv(data,Nrows,Ncols)

Description intrlvd = matintrlv(data,Nrows,Ncols) rearranges the elements in
data by filling a temporary matrix with the elements row by row and
then sending the matrix contents, column by column, to the output.
Nrows and Ncols are the dimensions of the temporary matrix. If data is
a vector, then it must have Nrows*Ncols elements. If data is a matrix
with multiple rows and columns, then data must have Nrows*Ncols
rows and the function processes the columns independently.

Examples The command below rearranges each of two columns of a matrix.

b = matintrlv([1 2 3 4 5 6; 2 4 6 8 10 12]',2,3)
b =

1 2
4 8
2 4
5 10
3 6
6 12

To form the first column of the output, the function creates the
temporary 2-by-3 matrix [1 2 3; 4 5 6]. Then the function reads
down each column of the temporary matrix to get [1 4 2 5 3 6].

See Also matdeintrlv, Chapter 7, “Interleaving”

15-224

minpol

Purpose Find the minimal polynomial of an element of a Galois field

Syntax pl = minpol(x)

Description pl = minpol(x) finds the minimal polynomial of each element in the
Galois column vector x. The output pl is an array in GF(2). The kth row
of pl lists the coefficients, in order of descending powers, of the minimal
polynomial of the kth element of x.

Note The output is in GF(2) even if the input is in a different Galois
field.

Examples The code below uses m = 4 and finds that the minimal polynomial of
gf(2,m) is just the primitive polynomial used for the field GF(2^m). This
is true for any value of m, not just the value used in the example.

m = 4;
A = gf(2,m)
pl = minpol(A)

The output is below. Notice that the row vector [1 0 0 1 1] represents
the polynomial D^4 + D + 1.

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

2

pl = GF(2) array.

Array elements =

1 0 0 1 1

15-225

minpol

Another example is in “Minimal Polynomials” on page 12-33.

See Also cosets, “Polynomials over Galois Fields” on page 12-30

15-226

mldivide

Purpose Matrix left division \ of Galois arrays

Syntax x = A\B

Description x = A\B divides the Galois array A into B to produce a particular
solution of the linear equation A*x = B. In the special case when A
is a nonsingular square matrix, x is the unique solution, inv(A)*B,
to the equation.

Examples The code below shows that A \ eye(size(A)) is the inverse of the
nonsingular square matrix A.

m = 4; A = gf([8 1 6; 3 5 7; 4 9 2],m);
Id = gf(eye(size(A)),m);
X = A \ Id;
ck1 = isequal(X*A, Id)
ck2 = isequal(A*X, Id)

The output is below.

ck1 =

1

ck2 =

1

Other examples are in “Solving Linear Equations” on page 12-25.

Limitations The matrix A must be one of these types:

• A nonsingular square matrix

• A tall matrix such that A'*A is nonsingular

• A wide matrix such that A*A' is nonsingular

15-227

mldivide

Algorithm If A is an M-by-N tall matrix where M > N, then A \ B is the same
as (A'*A) \ (A'*B).

If A is an M-by-N wide matrix where M < N, then A \ B is the same as
A' * ((A*A') \ B). This solution is not unique.

See Also “Linear Algebra in Galois Fields” on page 12-23

15-228

mlseeq

Purpose Equalize a linearly modulated signal using the Viterbi algorithm

Syntax y = mlseeq(x,chcffs,const,tblen,opmode)
y = mlseeq(x,chcffs,const,tblen,opmode,nsamp)
y = mlseeq(...,'rst',nsamp,preamble,postamble)
y = mlseeq(...,'cont',nsamp,...

init_metric,init_states,init_inputs)
[y,final_metric,final_states,final_inputs] = ...

mlseeq(...,'cont',...)

Description y = mlseeq(x,chcffs,const,tblen,opmode) equalizes the baseband
signal vector x using the Viterbi algorithm. chcffs is a vector that
represents the channel coefficients. const is a complex vector that
lists the points in the ideal signal constellation, in the same sequence
that the system’s modulator uses. tblen is the traceback depth. The
equalizer traces back from the state with the best metric. opmode
denotes the operation mode of the equalizer, where the choices are
described in the table below.

Value of opmode Typical Usage

'rst' Enables you to specify a preamble and
postamble that accompany your data. The
function processes x independently of data
from any other invocations of this function.
This mode incurs no output delay.

'cont' Enables you to save the equalizer’s internal
state information for use in a subsequent
invocation of this function. Repeated calls
to this function are useful if your data is
partitioned into a series of smaller vectors that
you process within a loop, for example. This
mode incurs an output delay of tblen symbols.

y = mlseeq(x,chcffs,const,tblen,opmode,nsamp) specifies the
number of samples per symbol in x, that is, the oversampling factor.

15-229

mlseeq

The vector length of x must be a multiple of nsamp. When nsamp>1, the
chcffs input represents the oversampled channel coefficients.

Preamble and Postamble in Reset Operation Mode

y = mlseeq(...,'rst',nsamp,preamble,postamble) specifies the
preamble and postamble that you expect to precede and follow,
respectively, the data in the input signal. The vectors preamble and
postamble consist of integers between 0 and M-1, where M is the order
of the modulation, that is, the number of elements in const. To omit a
preamble or postamble, specify [].

When the function applies the Viterbi algorithm, it initializes state
metrics in a way that depends on whether you specify a preamble
and/or postamble:

• If the preamble is nonempty, the function decodes the preamble and
assigns a metric of 0 to the decoded state. If the preamble does not
decode to a unique state (that is, if the length of the preamble is less
than the channel memory), the decoder assigns a metric of 0 to all
states that can be represented by the preamble. The traceback path
ends at one of the states represented by the preamble.

• If the preamble is unspecified or empty, the decoder initializes the
metrics of all states to 0.

• If the postamble is nonempty, the traceback path begins at the
smallest of all possible decoded states that are represented by the
postamble.

• If the postamble is unspecified or empty, the traceback path starts at
the state with the smallest metric.

Additional Syntaxes in Continuous Operation Mode

y = mlseeq(...,'cont',nsamp,...
init_metric,init_states,init_inputs) causes the equalizer to start
with its state metrics, traceback states, and traceback inputs specified
by init_metric, init_states, and init_inputs, respectively. These
three inputs are typically the extra outputs from a previous call to this

15-230

mlseeq

function, as in the syntax below. Each real number in init_metric
represents the starting state metric of the corresponding state.
init_states and init_inputs jointly specify the initial traceback
memory of the equalizer. The table below shows the valid dimensions
and values of the last three inputs, where numStates is ML-1, M is the
order of the modulation, and L is the number of symbols in the channel’s
impulse response (with no oversampling). To use default values for all
of the last three arguments, specify them as [],[],[].

Input
Argument

Meaning Matrix Size Range of
Values

init_metric State metrics 1 row, numStates
columns

Real numbers

init_states Traceback
states

numStates rows,
tblen columns

Integers
between 0 and
numStates-1

init_inputs Traceback
inputs

numStates rows,
tblen columns

Integers between
0 and M-1

[y,final_metric,final_states,final_inputs] = ...
mlseeq(...,'cont',...) returns the normalized state metrics,
traceback states, and traceback inputs, respectively, at the end of the
traceback decoding process. final_metric is a vector with numStates
elements that correspond to the final state metrics. final_states and
final_inputs are both matrices of size numStates-by-tblen.

Examples The example below illustrates how to use reset operation mode on an
upsampled signal.

M = 2; % Use 2-PAM.
const = pammod([0:M-1],M); % PAM constellation
tblen = 10; % Traceback depth for equalizer
nsamp = 2; % Number of samples per symbol

msgIdx = randint(1000,1,M); % Random bits
msg = upsample(pammod(msgIdx,M),nsamp); % Modulated message

15-231

mlseeq

chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients
chanest = chcoeffs; % Channel estimate
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
msgRx = awgn(filtmsg,5); % Add Gaussian noise.
msgEq = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp); % Equalize.
msgEqIdx = pamdemod(msgEq,M); % Demodulate.

[nerrs ber] = biterr(msgIdx, msgEqIdx) % Bit error rate

The output is below. Your results might vary because the example uses
random numbers.

nerrs =

1

ber =

0.0010

The example in “Example: Continuous Operation Mode” on page 11-31
illustrates how to use the final state and initial state arguments when
invoking mlseeq repeatedly.

The example in “Example: Using a Preamble” on page 11-34 illustrates
how to use a preamble.

See Also equalize, “Using MLSE Equalizers” on page 11-28

References [1] Proakis, John G., Digital Communications, Fourth Edition, New
York, McGraw-Hill, 2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester,
England, Wiley, 1996.

15-232

modnorm

Purpose Scaling factor for normalizing modulation output

Syntax scale = modnorm(const, 'avpow', avpow)
scale = modnorm(const, 'peakpow', peakpow)

Description scale = modnorm(const, 'avpow', avpow) returns a scale factor for
normalizing a PAM or QAM modulator output such that its average
power is avpow (watts). const is a vector specifying the reference
constellation used to generate the scale factor. The function assumes
that the signal to be normalized has a minimum distance of 2.

scale = modnorm(const, 'peakpow', peakpow) returns a scale factor
for normalizing a PAM or QAM modulator output such that its peak
power is peakpow (watts).

Examples The code below illustrates how to use modnorm to transmit a quadrature
amplitude modulated signal having a peak power of 1 watt.

M = 16; % Alphabet size
const = qammod([0:M-1],M); % Generate the constellation.
x = randint(1,100,M);
scale = modnorm(const,'peakpow',1); % Compute scale factor.
y = scale * qammod(x,M); % Modulate and scale.

ynoisy = awgn(y,10); % Transmit along noisy channel.

ynoisy_unscaled = ynoisy/scale; % Unscale at receiver end.
z = qamdemod(ynoisy_unscaled,M); % Demodulate.

% See how scaling affects constellation.
h = scatterplot(const,1,0,'ro'); % Unscaled constellation
hold on; % Next plot will be in same figure window.
scatterplot(const*scale,1,0,'bx',h); % Scaled constellation
hold off;

In the plot below, the plotting symbol o marks points on the original
QAM signal constellation, whereas the plotting symbol x marks points

15-233

modnorm

on the signal constellation as scaled by the output of the modnorm
function. The channel in this example carries points from the scaled
constellation.

Additional examples using modnorm are in “Examples of Signal
Constellation Plots” on page 8-12.

See Also pammod, pamdemod, qammod, qamdemod, Chapter 8, “Modulation”

15-234

mskdemod

Purpose Minimum shift keying demodulation

Syntax z = mskdemod(y,nsamp)
z = mskdemod(y,nsamp,dataenc)
z = mskdemod(y,nsamp,dataenc,ini_phase)
z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state)
[z,phaseout] = mskdemod(...)
[z,phaseout,stateout] = mskdemod(...)

Description z = mskdemod(y,nsamp) demodulates the complex envelope y of a
signal using the differentially encoded minimum shift keying (MSK)
method. nsamp denotes the number of samples per symbol and must be
a positive integer. The initial phase of the demodulator is 0. If y is a
matrix with multiple rows and columns, then the function treats the
columns as independent channels and processes them independently.

z = mskdemod(y,nsamp,dataenc) specifies the method of encoding data
for MSK. dataenc can be either 'diff' for differentially encoded MSK or
'nondiff' for nondifferentially encoded MSK.

z = mskdemod(y,nsamp,dataenc,ini_phase) specifies the initial phase
of the demodulator. ini_phase is a row vector whose length is the
number of channels in y and whose values are integer multiples of pi/2.
To avoid overriding the default value of dataenc, set dataenc to [].

z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state) specifies
the initial state of the demodulator. ini_state contains the last half
symbol of the previously received signal. ini_state is an nsamp-by-C
matrix, where C is the number of channels in y.

[z,phaseout] = mskdemod(...) returns the final phase of y, which is
important for demodulating a future signal. The output phaseout has
the same dimensions as the ini_phase input, and assumes the values
0, pi/2, pi, and 3*pi/2.

[z,phaseout,stateout] = mskdemod(...) returns the final nsamp
values of y, which is useful for demodulating the first symbol of a future
signal. stateout has the same dimensions as the ini_state input.

15-235

mskdemod

Examples The example below illustrates how to modulate and demodulate within
a loop. To provide continuity from one iteration to the next, the syntaxes
for mskmod and mskdemod use initial phases and/or state as both input
and output arguments.

% Define parameters.
numbits = 99; % Number of bits per iteration
numchans = 2; % Number of channels (columns) in signal
nsamp = 16; % Number of samples per symbol

% Initialize.
numerrs = 0; % Number of bit errors seen so far
demod_ini_phase = zeros(1,numchans); % Modulator phase
mod_ini_phase = zeros(1,numchans); % Demodulator phase
ini_state = complex(zeros(nsamp,numchans)); % Demod. state

% Main loop
for iRuns = 1 : 10

x = randint(numbits,numchans); % Binary signal
[y,phaseout] = mskmod(x,nsamp,[],mod_ini_phase);
mod_ini_phase = phaseout; % For next mskmod command
[z, phaseout, stateout] = ...

mskdemod(y,nsamp,[],demod_ini_phase,ini_state);
ini_state = stateout; % For next mskdemod command
demod_ini_phase = phaseout; % For next mskdemod command
numerrs = numerrs + biterr(x,z); % Cumulative bit errors

end
disp(['Total number of bit errors = ' num2str(numerrs)])

The output is below.

Total number of bit errors = 0

References [1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally
Efficient Modulation,” IEEE Communications Magazine, July, 1979,
pp. 14-22.

15-236

mskdemod

See Also mskmod, fskmod, fskdemod, Chapter 8, “Modulation”

15-237

mskmod

Purpose Minimum shift keying modulation

Syntax y = mskmod(x,nsamp)
y = mskmod(x,nsamp,dataenc)
y = mskmod(x,nsamp,dataenc,ini_phase)
[y,phaseout] = mskmod(...)

Description y = mskmod(x,nsamp) outputs the complex envelope y of the modulation
of the message signal x using differentially encoded minimum shift
keying (MSK) modulation. The elements of x must be 0 or 1. nsamp
denotes the number of samples per symbol in y and must be a positive
integer. The initial phase of the MSK modulator is 0. If x is a matrix
with multiple rows and columns, then the function treats the columns
as independent channels and processes them independently.

y = mskmod(x,nsamp,dataenc) specifies the method of encoding data
for MSK. dataenc can be either 'diff' for differentially encoded MSK or
'nondiff' for nondifferentially encoded MSK.

y = mskmod(x,nsamp,dataenc,ini_phase) specifies the initial phase
of the MSK modulator. ini_phase is a row vector whose length is the
number of channels in y and whose values are integer multiples of pi/2.
To avoid overriding the default value of dataenc, set dataenc to [].

[y,phaseout] = mskmod(...) returns the final phase of y. This is
useful for maintaining phase continuity when you are modulating a
future bit stream with differentially encoded MSK. phaseout has the
same dimensions as the ini_phase input, and assumes the values 0,
pi/2, pi, and 3*pi/2.

Examples The code below creates an eye diagram from an MSK signal.

x = randint(99,1); % Random signal
y = mskmod(x,8,[],pi/2);
y = awgn(y,30,'measured');
eyediagram(y,16);

15-238

mskmod

The example on the reference page for mskdemod also uses this function.

References [1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally
Efficient Modulation,” IEEE Communications Magazine, July, 1979,
pp. 14-22.

See Also mskdemod, fskmod, fskdemod, Chapter 8, “Modulation”

15-239

muxdeintrlv

Purpose Restore ordering of symbols using specified shift registers

Syntax deintrlved = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay,init_state)

Description deintrlved = muxdeintrlv(data,delay) restores the ordering of
elements in data by using a set of internal shift registers, each with its
own delay value. delay is a vector whose entries indicate how many
symbols each shift register can hold. The length of delay is the number
of shift registers. Before the function begins to process data, it initializes
all shift registers with zeros. If data is a matrix with multiple rows and
columns, then the function processes the columns independently.

[deintrlved,state] = muxdeintrlv(data,delay) returns a structure
that holds the final state of the shift registers. state.value stores any
unshifted symbols. state.index is the index of the next register to
be shifted.

[deintrlved,state] = muxdeintrlv(data,delay,init_state)
initializes the shift registers with the symbols contained in
init_state.value and directs the first input symbol to the shift
register referenced by init_state.index. The structure init_state is
typically the state output from a previous call to this same function,
and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the muxintrlv function, use the
same delay input in both functions. In that case, the two functions are
inverses in the sense that applying muxintrlv followed by muxdeintrlv
leaves data unchanged, after you take their combined delay of
length(delay)*max(delay) into account. To learn more about delays of
convolutional interleavers, see “Delays of Convolutional Interleavers”
on page 7-9.

15-240

muxdeintrlv

Examples The example below illustrates how to use the state input and output
when invoking muxdeintrlv repeatedly. Notice that [deintrlved1;
deintrlved2] is the same as deintrlved.

delay = [0 4 8 12]; % Delays in shift registers

symbols = 100; % Number of symbols to process

% Interleave random data.

intrlved = muxintrlv(randint(symbols,1,2,123),delay);

% Deinterleave some of the data, recording state for later use.

[deintrlved1,state] = muxdeintrlv(intrlved(1:symbols/2),delay);

% Deinterleave the rest of the data, using state as an input argument.

deintrlved2 = muxdeintrlv(intrlved(symbols/2+1:symbols),delay,state);

% Deinterleave all data in one step.

deintrlved = muxdeintrlv(intrlved,delay);

isequal(deintrlved,[deintrlved1; deintrlved2])

The output is below.

ans =

1

Another example using this function is in “Example: Convolutional
Interleavers” on page 7-7.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also muxintrlv, Chapter 7, “Interleaving”

15-241

muxintrlv

Purpose Permute symbols using shift registers with specified delays

Syntax intrlved = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay,init_state)

Description intrlved = muxintrlv(data,delay) permutes the elements in data by
using internal shift registers, each with its own delay value. delay is
a vector whose entries indicate how many symbols each shift register
can hold. The length of delay is the number of shift registers. Before
the function begins to process data, it initializes all shift registers with
zeros. If data is a matrix with multiple rows and columns, then the
function processes the columns independently.

[intrlved,state] = muxintrlv(data,delay) returns a structure that
holds the final state of the shift registers. state.value stores any
unshifted symbols. state.index is the index of the next register to
be shifted.

[intrlved,state] = muxintrlv(data,delay,init_state) initializes
the shift registers with the symbols contained in init_state.value
and directs the first input symbol to the shift register referenced by
init_state.index. The structure init_state is typically the state
output from a previous call to this same function, and is unrelated to
the corresponding deinterleaver.

Examples The examples in “Example: Convolutional Interleavers” on page 7-7 and
on the reference page for the convintrlv function use muxintrlv.

The example on the reference page for muxdeintrlv illustrates how to
use the state output and init_state input with that function; the
process is analogous for this function.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also muxdeintrlv, convintrlv, helintrlv, Chapter 7, “Interleaving”

15-242

noisebw

Purpose Equivalent noise bandwidth of a filter

Syntax bw = noisebw(num, den, numsamp, Fs)

Description bw = noisebw(num, den, numsamp, Fs) returns the two-sided
equivalent noise bandwidth, in Hz, of a digital lowpass filter given
in descending powers of z by numerator vector num and denominator
vector den. The bandwidth is calculated over numsamp samples of the
impulse response. Fs is the sampling rate of the signal that the filter
would process; this is used as a scaling factor to convert a normalized
unitless quantity into a bandwidth in Hz.

Examples This example computes the equivalent noise bandwidth of a
Butterworth filter over 100 samples of the impulse response.

Fs = 16; % Sampling rate
Fnyq = Fs/2; % Nyquist frequency
Fc = 0.5; % Carrier frequency
[num,den] = butter(2,Fc/Fnyq); % Butterworth filter
bw = noisebw(num,den,100,Fs)

The output is below.

bw =

1.1049

15-243

noisebw

Algorithm The two-sided equivalent noise bandwidth is

where h is the impulse response of the filter described by num and den,
and N is numsamp.

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, New York, Plenum Press, 1992.

15-244

normlms

Purpose Construct a normalized least mean square (LMS) adaptive algorithm
object

Syntax alg = normlms(stepsize)
alg = normlms(stepsize,bias)

Description The normlms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing
a signal, see “Using Adaptive Equalizer Functions and Objects” on
page 11-8.

alg = normlms(stepsize) constructs an adaptive algorithm object
based on the normalized least mean square (LMS) algorithm with a step
size of stepsize and a bias parameter of zero.

alg = normlms(stepsize,bias) sets the bias parameter of the
normalized LMS algorithm. bias must be between 0 and 1. The
algorithm uses the bias parameter to overcome difficulties when the
algorithm’s input signal is small.

Properties

The table below describes the properties of the normalized LMS
adaptive algorithm object. To learn how to view or change the values of
an adaptive algorithm object, see “Accessing Properties of an Adaptive
Algorithm” on page 11-12.

Property Description

AlgType Fixed value, 'Normalized LMS'

StepSize LMS step size parameter, a
nonnegative real number

15-245

normlms

Property Description

LeakageFactor LMS leakage factor, a real
number between 0 and 1. A value
of 1 corresponds to a conventional
weight update algorithm, while
a value of 0 corresponds to a
memoryless update algorithm.

Bias Normalized LMS bias parameter,
a nonnegative real number

Examples For an example that uses this function, see “Delays from Equalization”
on page 11-21.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes” on page 11-3, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set
of weights, w, this adaptive algorithm creates the new set of weights
given by

()
() *

LeakageFactor
StepSize

Bias
w

u e
u uH+

+

where the * operator denotes the complex conjugate and H denotes
the Hermitian transpose.

See Also lms, signlms, varlms, rls, cma, lineareq, dfe, equalize, Chapter 11,
“Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

15-246

oct2dec

Purpose Convert octal numbers to decimal numbers

Syntax d = oct2dec(c)

Description d = oct2dec(c) converts an octal matrix c to a decimal matrix d,
element by element. In both octal and decimal representations, the
rightmost digit is the least significant.

Examples The command below converts a 2-by-2 octal matrix.

d = oct2dec([12 144;0 25])

d =

10 100
0 21

For instance, the octal number 144 is equivalent to the decimal number
100 because 144 (octal) = 1*82 + 4*81 + 4*80 = 64 + 32 + 4 = 100.

See Also bi2de

15-247

oqpskdemod

Purpose Offset quadrature phase shift keying demodulation

Syntax z = oqpskdemod(y)
z = oqpskdemod(y,ini_phase)

Description z = oqpskdemod(y) demodulates the complex envelope y of an OQPSK
modulated signal. The function implicitly downsamples by a factor
of 2 because OQPSK does not permit an odd number of samples per
symbol. If y is a matrix with multiple rows, then the function processes
the columns independently.

z = oqpskdemod(y,ini_phase) specifies the phase offset of the
modulated signal in radians.

See Also oqpskmod, pskmod, pskdemod, qammod, qamdemod, modnorm, Chapter 8,
“Modulation”

15-248

oqpskmod

Purpose Offset quadrature phase shift keying modulation

Syntax y = oqpskmod(x)
y = oqpskmod(x,ini_phase)

Description y = oqpskmod(x) outputs the complex envelope y of the modulation
of the message signal x using offset quadrature phase shift keying
(OQPSK) modulation. The message signal must consist of integers
between 0 and 3. The function implicitly upsamples by a factor of 2
because OQPSK does not permit an odd number of samples per symbol.
If x is a matrix with multiple rows, then the function processes the
columns independently.

y = oqpskmod(x,ini_phase) specifies the phase offset of the modulated
signal in radians.

See Also oqpskdemod, pskmod, pskdemod, qammod, qamdemod, modnorm, Chapter
8, “Modulation”

15-249

pamdemod

Purpose Pulse amplitude demodulation

Syntax z = pamdemod(y,M)
z = pamdemod(y,M,ini_phase)

Description z = pamdemod(y,M) demodulates the complex envelope y of a pulse
amplitude modulated signal. M is the alphabet size. The ideal modulated
signal should have a minimum Euclidean distance of 2.

z = pamdemod(y,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples The example in “Comparing Theoretical and Empirical Error Rates”
on page 3-10 uses this function.

See Also pammod, qamdemod, qammod, pskdemod, pskmod, Chapter 8, “Modulation”

15-250

pammod

Purpose Pulse amplitude modulation

Syntax y = pammod(x,M)
y = pammod(x,M,ini_phase)

Description y = pammod(x,M) outputs the complex envelope y of the modulation
of the message signal x using pulse amplitude modulation. M is the
alphabet size. The message signal must consist of integers between 0
and M-1. The modulated signal has a minimum Euclidean distance
of 2. If x is a matrix with multiple rows, then the function processes
the columns independently.

y = pammod(x,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples The example in “Comparing Theoretical and Empirical Error Rates”
on page 3-10 uses this function.

See Also pamdemod, qammod, qamdemod, pskmod, pskdemod, Chapter 8,
“Modulation”

15-251

pmdemod

Purpose Phase demodulation

Syntax z = pmmod(y,Fc,Fs,phasedev)
z = pmmod(y,Fc,Fs,phasedev,ini_phase)

Description z = pmmod(y,Fc,Fs,phasedev) demodulates the phase-modulated
signal y at the carrier frequency Fc (Hz). z and the carrier signal have
sampling rate Fs (Hz), where Fs must be at least 2*Fc. The phasedev
argument is the phase deviation of the modulated signal, in radians.

z = pmmod(y,Fc,Fs,phasedev,ini_phase) specifies the initial phase of
the modulated signal, in radians.

Examples The example in “Analog Modulation Example” on page 8-6 uses pmdemod.

See Also pmmod, fmmod, fmdemod, Chapter 8, “Modulation”

15-252

pmmod

Purpose Phase modulation

Syntax y = pmmod(x,Fc,Fs,phasedev)
y = pmmod(x,Fc,Fs,phasedev,ini_phase)

Description y = pmmod(x,Fc,Fs,phasedev) modulates the message signal x using
phase modulation. The carrier signal has frequency Fc (Hz) and
sampling rate Fs (Hz), where Fs must be at least 2*Fc. The phasedev
argument is the phase deviation of the modulated signal in radians.

y = pmmod(x,Fc,Fs,phasedev,ini_phase) specifies the initial phase of
the modulated signal in radians.

Examples The example in “Analog Modulation Example” on page 8-6 uses pmmod.

See Also pmdemod, fmmod, fmdemod, Chapter 8, “Modulation”

15-253

poly2trellis

Purpose Convert convolutional code polynomials to trellis description

Syntax trellis = poly2trellis(ConstraintLength,CodeGenerator)
trellis = poly2trellis(ConstraintLength,CodeGenerator,...

FeedbackConnection)

Description The poly2trellis function accepts a polynomial description of a
convolutional encoder and returns the corresponding trellis structure
description. The output of poly2trellis is suitable as an input to
the convenc and vitdec functions, and as a mask parameter for the
Convolutional Encoder, Viterbi Decoder, and APP Decoder blocks in the
Communications Blockset.

trellis = poly2trellis(ConstraintLength,CodeGenerator)
performs the conversion for a rate k/n feedforward encoder.
ConstraintLength is a 1-by-k vector that specifies the delay for the
encoder’s k input bit streams. CodeGenerator is a k-by-n matrix of
octal numbers that specifies the n output connections for each of the
encoder’s k input bit streams.

trellis = poly2trellis(ConstraintLength,CodeGenerator,...
FeedbackConnection) is the same as the syntax above, except that it
applies to a feedback, not feedforward, encoder. FeedbackConnection is
a 1-by-k vector of octal numbers that specifies the feedback connections
for the encoder’s k input bit streams.

For both syntaxes, the output is a MATLAB structure whose fields
are as in the table below.

15-254

poly2trellis

Fields of the Output Structure trellis for a Rate k/n Code

Field in trellis
Structure

Dimensions Meaning

numInputSymbols Scalar Number of input
symbols to the
encoder: 2k

numOutputSymbols Scalar Number of output
symbols from the
encoder: 2n

numStates Scalar Number of states in
the encoder

nextStates numStates-by-2k

matrix
Next states for all
combinations of
current state and
current input

outputs numStates-by-2k

matrix
Outputs (in octal)
for all combinations
of current state and
current input

For more about this structure, see the reference page for the istrellis
function.

Examples An example of a rate 1/2 encoder is in “Polynomial Description of a
Convolutional Encoder” on page 6-30.

As another example, consider the rate 2/3 feedforward convolutional
encoder depicted in the figure below. The reference page for the convenc
function includes an example that uses this encoder.

15-255

poly2trellis

For this encoder, the ConstraintLength vector is [5,4] and the
CodeGenerator matrix is [23,35,0; 0,5,13]. The output below reveals
part of the corresponding trellis structure description of this encoder.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis =

numInputSymbols: 4
numOutputSymbols: 8

numStates: 128
nextStates: [128x4 double]

outputs: [128x4 double]

15-256

poly2trellis

The scalar field trellis.numInputSymbols has the value 4 because the
combination of two input bit streams can produce four different input
symbols. Similarly, trellis.numOutputSymbols is 8 because the three
output bit streams can produce eight different output symbols.

The scalar field trellis.numStates is 128 (that is, 27) because each of
the encoder’s seven memory registers can have one of two binary values.

To get details about the matrix fields trellis.nextStates and
trellis.outputs, inquire specifically about them. As an example,
the command below displays the first five rows of the 128-by-4 matrix
trellis.nextStates.

trellis.nextStates(1:5,:)

ans =

0 64 8 72
0 64 8 72
1 65 9 73
1 65 9 73
2 66 10 74

This first row indicates that if the encoder starts in the zeroth state and
receives input bits of 00, 01, 10, or 11, respectively, then the next state
will be the 0th, 64th, 8th, or 72nd state, respectively. The 64th state
means that the bottom-left memory register in the diagram contains
the value 1, while the other six memory registers contain zeros.

See Also istrellis, convenc, vitdec, “Convolutional Coding” on page 6-30

15-257

primpoly

Purpose Find primitive polynomials for a Galois field

Syntax pr = primpoly(m)
pr = primpoly(m,opt)
pr = primpoly(m...,'nodisplay')

Description pr = primpoly(m) returns the primitive polynomial for GF(2^m), where
m is an integer between 2 and 16. The Command Window displays
the polynomial using "D" as an indeterminate quantity. The output
argument pr is an integer whose binary representation indicates the
coefficients of the polynomial.

pr = primpoly(m,opt) returns one or more primitive polynomials
for GF(2^m). The output pol depends on the argument opt as shown
in the table below. Each element of the output argument pr is an
integer, whose binary representation indicates the coefficients of the
corresponding polynomial. If no primitive polynomial satisfies the
constraints, then pr is empty.

opt Meaning of pr

'min' One primitive polynomial for
GF(2^m) having the smallest
possible number of nonzero terms

'max' One primitive polynomial for
GF(2^m) having the greatest
possible number of nonzero terms

'all' All primitive polynomials for
GF(2^m)

Positive integer k All primitive polynomials for
GF(2^m) that have k nonzero
terms

pr = primpoly(m...,'nodisplay') prevents the function from
displaying the result as polynomials in "D" in the Command Window.
The output argument pr is unaffected by the 'nodisplay' option.

15-258

primpoly

Examples The first example below illustrates the formats that primpoly uses in
the Command Window and in the output argument pr. The subsequent
examples illustrate the display options and the use of the opt argument.

pr = primpoly(4)

pr1 = primpoly(5,'max','nodisplay')

pr2 = primpoly(5,'min')

pr3 = primpoly(5,2)

pr4 = primpoly(5,3);

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

pr =

19

pr1 =

61

Primitive polynomial(s) =

D^5+D^2+1

pr2 =

15-259

primpoly

37

No primitive polynomial satisfies the given constraints.

pr3 =

[]

Primitive polynomial(s) =

D^5+D^2+1
D^5+D^3+1

See Also isprimitive, Chapter 12, “Galois Field Computations”

15-260

pskdemod

Purpose Phase shift keying demodulation

Syntax z = pskdemod(y,M)
z = pskdemod(y,M,ini_phase)

Description z = pskdemod(y,M) demodulates the complex envelope y of a PSK
modulated signal. M is the alphabet size and must be an integer power
of 2. The initial phase of the modulation is zero. If y is a matrix with
multiple rows and columns, then the function processes the columns
independently.

z = pskdemod(y,M,ini_phase) specifies the initial phase of the
modulation in radians.

Examples The example below compares PSK and PAM (phase amplitude
modulation) to show that PSK is more sensitive to phase noise. This
is the expected result because the PSK constellation is circular, while
the PAM constellation is linear.

len = 10000; % Number of symbols
M = 16; % Size of alphabet
msg = randint(len,1,M); % Original signal

% Modulate using both PSK and PAM,
% to compare the two methods.
txpsk = pskmod(msg,M);
txpam = pammod(msg,M);

% Perturb the phase of the modulated signals.
phasenoise = randn(len,1)*.015;
rxpsk = txpsk.*exp(j*2*pi*phasenoise);
rxpam = txpam.*exp(j*2*pi*phasenoise);

% Create a scatter plot of the received signals.
scatterplot(rxpsk); title('Noisy PSK Scatter Plot')
scatterplot(rxpam); title('Noisy PAM Scatter Plot')

15-261

pskdemod

% Demodulate the received signals.
recovpsk = pskdemod(rxpsk,M);
recovpam = pamdemod(rxpam,M);

% Compute number of symbol errors in each case.
numerrs_psk = symerr(msg,recovpsk)
numerrs_pam = symerr(msg,recovpam)

The output and scatter plots are below. Your results might vary because
the example uses random numbers.

numerrs_psk =

374

numerrs_pam =

1

15-262

pskdemod

See Also pskmod, qamdemod, qammod, dpskdemod, dpskdemod, modnorm, Chapter
8, “Modulation”

15-263

pskmod

Purpose Phase shift keying modulation

Syntax y = pskmod(x,M)
y = pskmod(x,M,ini_phase)

Description y = pskmod(x,M) outputs the complex envelope y of the modulation of
the message signal x using phase shift keying modulation. M is the
alphabet size and must be an integer power of 2. The message signal
must consist of integers between 0 and M-1. The initial phase of the
modulation is zero. If x is a matrix with multiple rows and columns,
then the function processes the columns independently.

y = pskmod(x,M,ini_phase) specifies the initial phase of the
modulation in radians.

Examples The examples in “Constellation for 16-PSK” on page 8-13 and on the
reference page for pskdemod use this function.

See Also pskdemod, pammod, pamdemod, qammod, qamdemod, modnorm, Chapter 8,
“Modulation”

15-264

qamdemod

Purpose Quadrature amplitude demodulation

Syntax z = qamdemod(y,M)
z = qamdemod(y,M,ini_phase)

Description z = qamdemod(y,M) demodulates the complex envelope y of a
quadrature amplitude modulated signal. M is the alphabet size and
must be an integer power of 2. The constellation is the same as in
qammod. If y is a matrix with multiple rows, then the function processes
the columns independently.

z = qamdemod(y,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples The code below suggests which regions in the complex plane are
associated with different digits that can form the output of the
demodulator. The code demodulates random points, looks for points
that were demapped to the digits 0 and 3, and plots those points in red
and blue, respectively. You might also notice that the regions reflect a
rotation of the signal constellation by pi/8.

% Construct [in-phase, quadrature] for random points.
y = 4*(rand(1000,1)-1/2)+j*4*(rand(1000,1)-1/2);
% Demodulate using an initial phase of pi/8.
z = qamdemod(y,4,pi/8);
% Find indices of points that mapped to the digits 0 and 3.
red = find(z==0);
blue = find(z==3);
% Plot points corresponding to 0 and 3.
h = scatterplot(y(red,:),1,0,'r.'); hold on
scatterplot(y(blue,:),1,0,'b.',h);
legend('Points corresponding to 0','Points corresponding to 3');
hold off

15-265

qamdemod

Another example using this function is in “Computing the Symbol Error
Rate” on page 8-9.

See Also qammod, genqamdemod, genqammod, pamdemod, modnorm, Chapter 8,
“Modulation”

15-266

qammod

Purpose Quadrature amplitude modulation

Syntax y = qammod(x,M)
y = qammod(x,M,ini_phase)

Description y = qammod(x,M) outputs the complex envelope y of the modulation of
the message signal x using quadrature amplitude modulation. M is the
alphabet size and must be an integer power of 2. The message signal
must consist of integers between 0 and M-1. The signal constellation
is rectangular or cross-shaped, and the nearest pair of points in the
constellation is separated by 2. If x is a matrix with multiple rows, then
the function processes the columns independently.

y = qammod(x,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples Examples using this function are in “Computing the Symbol Error Rate”
on page 8-9 and “Examples of Signal Constellation Plots” on page 8-12.

See Also qamdemod, genqammod, genqamdemod, pammod, pamdemod, modnorm,
Chapter 8, “Modulation”

15-267

qfunc

Purpose Q function

Syntax y = qfunc(x)

Description y = qfunc(x) is one minus the cumulative distribution function of the
standardized normal random variable, evaluated at each element of the
real array x. For a scalar x, the formula is

The Q function is related to the complementary error function, erfc,
according to

Examples The example below computes the Q function on a matrix, element by
element.

x = [0 1 2; 3 4 5];
format short e % Switch to floating point format for displays.
y = qfunc(x)
format % Return to default format for displays.

The output is below.

y =

5.0000e-001 1.5866e-001 2.2750e-002
1.3499e-003 3.1671e-005 2.8665e-007

See Also qfuncinv, erf, erfc, erfcx, erfinv, erfcinv

15-268

qfuncinv

Purpose Inverse Q function

Syntax y = qfuncinv(x)

Description y = qfuncinv(x) returns the argument of the Q function at which the
Q function’s value is x. The input x must be a real array with elements
between 0 and 1, inclusive.

For a scalar x, the Q function is one minus the cumulative distribution
function of the standardized normal random variable, evaluated at
x. The Q function is defined as

The Q function is related to the complementary error function, erfc,
according to

Examples The example below illustrates the inverse relationship between qfunc
and qfuncinv.

x1 = [0 1 2; 3 4 5];
y1 = qfuncinv(qfunc(x1)) % Invert qfunc to recover x1.
x2 = 0:.2:1;
y2 = qfunc(qfuncinv(x2)) % Invert qfuncinv to recover x2.

The output is below.

15-269

qfuncinv

y1 =

0 1 2
3 4 5

y2 =

0 0.2000 0.4000 0.6000 0.8000 1.0000

See Also qfunc, erf, erfc, erfcx, erfinv, erfcinv

15-270

quantiz

Purpose Produce a quantization index and a quantized output value

Syntax index = quantiz(sig,partition)
[index,quants] = quantiz(sig,partition,codebook)
[index,quants,distor] = quantiz(sig,partition,codebook)

Description index = quantiz(sig,partition) returns the quantization levels in
the real vector signal sig using the parameter partition. partition is
a real vector whose entries are in strictly ascending order. If partition
has length n, then index is a column vector whose kth entry is

• 0 if sig(k) ≤ partition(1)

• m if partition(m) < sig(k) ≤ partition(m+1)

• n if partition(n) < sig(k)

[index,quants] = quantiz(sig,partition,codebook) is the same as
the syntax above, except that codebook prescribes a value for each
partition in the quantization and quants contains the quantization of
sig based on the quantization levels and prescribed values. codebook is
a vector whose length exceeds the length of partition by one. quants is
a row vector whose length is the same as the length of sig. quants is
related to codebook and index by

quants(ii) = codebook(index(ii)+1);

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is the
same as the syntax above, except that distor estimates the mean
square distortion of this quantization data set.

Examples The command below rounds several numbers between 1 and 100 up to
the nearest multiple of ten. quants contains the rounded numbers, and
index tells which quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)

15-271

quantiz

The output is below.

index =

0
3
8
3
2

quants =

10 40 90 40 30

See Also lloyds, dpcmenco, dpcmdeco, “Quantizing a Signal” on page 5-2

15-272

randdeintrlv

Purpose Restore ordering of symbols using a random permutation

Syntax deintrlvd = randdeintrlv(data,state)

Description deintrlvd = randdeintrlv(data,state) restores the original ordering
of the elements in data by inverting a random permutation. The state
parameter initializes the random number generator that the function
uses to determine the permutation. The function is predictable for a
given state, but different states produce different permutations. If data
is a matrix with multiple rows and columns, then the function processes
the columns independently.

To use this function as an inverse of the randintrlv function, use the
same state input in both functions. In that case, the two functions
are inverses in the sense that applying randintrlv followed by
randdeintrlv leaves data unchanged.

Examples For an example using random interleaving and deinterleaving, see
“Example: Block Interleavers” on page 7-3.

See Also randintrlv, Chapter 7, “Interleaving”

15-273

randerr

Purpose Generate bit error patterns

Syntax out = randerr(m)
out = randerr(m,n)
out = randerr(m,n,errors)
out = randerr(m,n,prob,state)

Description For all syntaxes, randerr treats each row of out independently.

out = randerr(m) generates an m-by-m binary matrix, each row of
which has exactly one nonzero entry in a random position. Each
allowable configuration has an equal probability.

out = randerr(m,n) generates an m-by-n binary matrix, each row
of which has exactly one nonzero entry in a random position. Each
allowable configuration has an equal probability.

out = randerr(m,n,errors) generates an m-by-n binary matrix, where
errors determines how many nonzero entries are in each row:

• If errors is a scalar, then it is the number of nonzero entries in
each row.

• If errors is a row vector, then it lists the possible number of nonzero
entries in each row.

• If errors is a matrix having two rows, then the first row lists the
possible number of nonzero entries in each row and the second row
lists the probabilities that correspond to the possible error counts.

Once randerr determines the number of nonzero entries in a given
row, each configuration of that number of nonzero entries has equal
probability.

out = randerr(m,n,prob,state) is the same as the syntax above,
except that it first resets the state of the uniform random number
generator rand to the integer state.

15-274

randerr

Examples The examples below generate an 8-by-7 binary matrix, each row of
which is equally likely to have either zero or two nonzero entries, and
then alter the scenario by making it three times as likely that a row has
two nonzero entries. Notice in the latter example that the second row of
the error parameter sums to one.

out = randerr(8,7,[0 2])

out2 = randerr(8,7,[0 2; .25 .75])

Sample output is below.

out =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 1
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
1 0 1 0 0 0 0

out2 =

0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 1 0 0

See Also rand, randsrc, randint, Chapter 2, “Signal Sources”

15-275

randint

Purpose Generate matrix of uniformly distributed random integers

Syntax out = randint
out = randint(m)
out = randint(m,n)
out = randint(m,n,rg)
out = randint(m,n,rg,state)

Description out = randint generates a random scalar that is either 0 or 1, with
equal probability.

out = randint(m) generates an m-by-m binary matrix, each of whose
entries independently takes the value 0 with probability 1/2.

out = randint(m,n) generates an m-by-n binary matrix, each of whose
entries independently takes the value 0 with probability 1/2.

out = randint(m,n,rg) generates an m-by-n integer matrix. If rg is
zero, then out is a zero matrix. Otherwise, the entries are uniformly
distributed and independently chosen from the range

• [0, rg-1] if rg is a positive integer

• [rg+1, 0] if rg is a negative integer

• Between min and max, inclusive, if rg = [min,max] or [max,min]

out = randint(m,n,rg,state) is the same as the syntax above, except
that it first resets the state of the uniform random number generator
rand to the integer state.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed
in the range from 0 to 7, you can use either of the following commands.

out = randint(10,10,[0,7]);

out = randint(10,10,8);

See Also rand, randsrc, randerr, Chapter 2, “Signal Sources”

15-276

randintrlv

Purpose Reorder symbols using a random permutation

Syntax intrlvd = randintrlv(data,state)

Description intrlvd = randintrlv(data,state) rearranges the elements in data
using a random permutation. The state parameter initializes the
random number generator that the function uses to determine the
permutation. The function is predictable and invertible for a given
state, but different states produce different permutations. If data is a
matrix with multiple rows and columns, then the function processes
the columns independently.

Examples For an example using random interleaving and deinterleaving, see
“Example: Block Interleavers” on page 7-3.

See Also randdeintrlv, Chapter 7, “Interleaving”

15-277

randsrc

Purpose Generate random matrix using prescribed alphabet

Syntax out = randsrc
out = randsrc(m)
out = randsrc(m,n)
out = randsrc(m,n,alphabet)
out = randsrc(m,n,[alphabet; prob])
out = randsrc(m,n,...,state);

Description out = randsrc generates a random scalar that is either -1 or 1, with
equal probability.

out = randsrc(m) generates an m-by-m matrix, each of whose entries
independently takes the value -1 with probability 1/2, and 1 with
probability 1/2.

out = randsrc(m,n) generates an m-by-n matrix, each of whose entries
independently takes the value -1 with probability 1/2, and 1 with
probability 1/2.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, each of
whose entries is independently chosen from the entries in the row vector
alphabet. Each entry in alphabet occurs in out with equal probability.
Duplicate values in alphabet are ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix,
each of whose entries is independently chosen from the entries in the
row vector alphabet. Duplicate values in alphabet are ignored. The
row vector prob lists corresponding probabilities, so that the symbol
alphabet(k) occurs with probability prob(k), where k is any integer
between one and the number of columns of alphabet. The elements of
prob must add up to one.

out = randsrc(m,n,...,state); is the same as the two preceding
syntaxes, except that it first resets the state of the uniform random
number generator rand to the integer state.

15-278

randsrc

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed
among members of the set {-3,-1,1,3}, you can use either of these
commands.

out = randsrc(10,10,[-3 -1 1 3]);

out = randsrc(10,10,[-3 -1 1 3; .25 .25 .25 .25]);

To skew the probability distribution so that -1 and 1 each occur with
probability .3, while -3 and 3 each occur with probability .2, use this
command.

out = randsrc(10,10,[-3 -1 1 3; .2 .3 .3 .2]);

See Also rand, randint, randerr, Chapter 2, “Signal Sources”

15-279

rayleighchan

Purpose Construct a Rayleigh fading channel object

Syntax chan = rayleighchan(ts,fd)
chan = rayleighchan(ts,fd,tau,pdb)
chan = rayleighchan

Description chan = rayleighchan(ts,fd) constructs a frequency-flat (“single
path”) Rayleigh fading channel object. ts is the sample time of the
input signal, in seconds. fd is the maximum Doppler shift, in Hertz.
You can model the effect of the channel on a signal x by using the
syntax y = filter(chan,x).

chan = rayleighchan(ts,fd,tau,pdb) constructs a frequency-selective
(“multiple path”) fading channel object that models each discrete path
as an independent Rayleigh fading process. tau is a vector of path
delays, each specified in seconds. pdb is a vector of average path gains,
each specified in dB.

chan = rayleighchan constructs a frequency-flat Rayleigh channel
object with no Doppler shift. This is a static channel. The sample time
of the input signal is irrelevant for frequency-flat static channels.

Properties

The tables below describe the properties of the channel object, chan,
that you can set and that MATLAB sets automatically. To learn how
to view or change the values of a channel object, see “Viewing Object
Properties” on page 10-9 or “Changing Object Properties” on page 10-10.

Writeable Properties

Property Description

InputSamplePeriod Sample period of the signal on
which the channel acts, measured
in seconds

MaxDopplerShift Maximum Doppler shift of the
channel, in Hz

15-280

rayleighchan

Property Description

PathDelays Vector listing the delays of the
discrete paths, in seconds

AvgPathGaindB Vector listing the average gain of
the discrete paths, in dB

NormalizePathGains If 1, the Rayleigh fading process
is normalized such that the
expected value of the path gains’
total power is 1.

ResetBeforeFiltering If 1, each call to filter resets the
state of chan before filtering. If
0, the fading process maintains
continuity from one call to the
next.

Read-Only Properties

Property Description When MATLAB
Sets or Updates
Value

ChannelType Fixed value, 'Rayleigh' When you create
object

PathGains Complex vector listing
the current gains of the
discrete paths. When
you create or reset chan,
PathGains is a random
vector influenced by
AvgPathGaindB and
NormalizePathGains.

When you create
object, reset object,
or use it to filter a
signal

15-281

rayleighchan

Property Description When MATLAB
Sets or Updates
Value

ChannelFilterDelay Delay of the channel
filter, measured in
samples

When you
create object or
change ratio of
InputSamplePeriod
to PathDelays

NumSamplesProcessed Number of samples the
channel processed since
the last reset. When you
create or reset chan, this
property value is 0.

When you create
object, reset object,
or use it to filter a
signal

Relationships Among Properties

The PathDelays and AvgPathGaindB properties of the channel object
must always have the same vector length, because this length equals
the number of discrete paths of the channel. If you change the value
of PathDelays, then MATLAB truncates or zero-pads the value of
AvgPathGaindB if necessary to adjust its vector length. MATLAB might
also change the values of read-only properties such as PathGains and
ChannelFilterDelay.

Examples Several examples using this function are in “Fading Channels” on
page 10-6.

The example below illustrates that when you change the value of
PathDelays, MATLAB automatically changes the values of other
properties to make their vector lengths consistent with that of the new
value of PathDelays.

c1 = rayleighchan(1e-5,130) % Create object.
c1.PathDelays = [0 1e-6] % Change the number of delays.
% MATLAB automatically changes the size of c1.AvgPathGaindB,
% c1.PathGains, and c1.ChannelFilterDelay.

15-282

rayleighchan

The output below displays all the properties of the channel object before
and after the change in the value of the PathDelays property. Notice
that in the second listing of properties, the AvgPathGaindB, PathGains,
and ChannelFilterDelay properties all have different values compared
to the first listing of properties.

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

MaxDopplerShift: 130
PathDelays: 0

AvgPathGaindB: 0
NormalizePathGains: 1

PathGains: 0.2104- 0.6197i
ChannelFilterDelay: 0

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

MaxDopplerShift: 130
PathDelays: [0 1.0000e-006]

AvgPathGaindB: [0 0]
NormalizePathGains: 1

PathGains: [-0.3088+ 0.1842i 0.3008- 0.0338i]
ChannelFilterDelay: 4

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

Algorithm This toolbox models a fading channel as a linear FIR filter, with tap
weights given by

15-283

rayleighchan

g T n h N n Nn
k

k k= − ≤ ≤∑sinc(/)τ for - 1 2

where

• The summation has one term for each major path.

• { }τk is the set of path delays.

• T is the input sample period.

• N1 and N2 are chosen so that |gn| is small when n is less than –N1
or greater than N2.

• N1 is the value of the object’s ChannelFilterDelay property.

• {hk} is the set of complex path gains, which are not correlated with
each other.

To generate a particular path gain hk, the function performs these steps:

1 Generates white Gaussian noise

2 Passes the noise through a filter whose power spectrum corresponds
to the Jakes Doppler spectrum

3 Interpolates values so that the sample period is consistent with
that of the signal

4 Adjusts accordingly to obtain the correct average path gain

See Also ricianchan, filter, reset, “Fading Channels” on page 10-6

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.

15-284

rcosfir

Purpose Design a raised cosine FIR filter

Syntax b = rcosfir(R,n_T,rate,T)
b = rcosfir(R,n_T,rate,T,filter_type)
rcosfir(...)
rcosfir(...,colr)
[b,sample_time] = rcosfir(...)

Optional
Inputs

Input Default Value

n_T [-3,3]

rate 5

T 1

Description The rcosfir function designs the same filters that the rcosine function
designs when the latter’s type_flag argument includes 'fir'. However,
rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

b = rcosfir(R,n_T,rate,T) designs a raised cosine filter and returns
a vector b of length(n_T(2) - n_T(1))*rate + 1. The filter’s rolloff
factor is R, a real number between 0 and 1, inclusive. T is the duration
of each bit in seconds. n_T is a length-two vector that indicates the
number of symbol periods before and after the peak response. rate is
the number of points in each input symbol period of length T. rate must
be greater than 1. The input sample rate is T samples per second, while
the output sample rate is T*rate samples per second.

The order of the FIR filter is

15-285

rcosfir

(n_T(2)-n_T(1))*rate

The arguments n_T, rate, and T are optional inputs whose default
values are [-3,3], 5, and 1, respectively.

b = rcosfir(R,n_T,rate,T,filter_type) designs a square-root
raised cosine filter if filter_type is 'sqrt'. If filter_type is ’normal’
then this syntax is the same as the previous one.

The impulse response of a square root raised cosine filter is

h t R

R t T
R t T

R
t
T

T Rt T
()

cos(() /)
sin(() /)

((/))
=

+ + −

−
4

1
1

4

1 4 2

π π

π

rcosfir(...) produces plots of the time and frequency responses of the
raised cosine filter.

rcosfir(...,colr) uses the string colr to determine the plotting color.
The choices for colr are the same as those listed for the plot function.

[b,sample_time] = rcosfir(...) returns the FIR filter and its
sample time.

Examples The commands below compare different rolloff factors.

rcosfir(0);
subplot(211); hold on;
subplot(212); hold on;
rcosfir(.5,[],[],[],[],'r-');
rcosfir(1,[],[],[],[],'g-');

See Also rcosiir, rcosflt, rcosine, firrcos, rcosdemo, Chapter 9, “Special
Filters”

References [1] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.

15-286

rcosflt

Purpose Filter the input signal using a raised cosine filter

Syntax y = rcosflt(x,Fd,Fs)
y = rcosflt(x,Fd,Fs,'filter_type',r,delay,tol)
y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol)
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den)
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay)
y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...)
[y,t] = rcosflt(...)

Optional
Inputs

Input Default Value

filter_type fir/normal

r 0.5

delay 3

tol 0.01

den 1

Description The function rcosflt passes an input signal through a raised
cosine filter. You can either let rcosflt design a raised cosine filter
automatically or you can specify the raised cosine filter yourself using
input arguments.

Designing the Filter Automatically

y = rcosflt(x,Fd,Fs) designs a raised cosine FIR filter and then
filters the input signal x using it. The sample frequency for the digital
input signal x is Fd, and the sample frequency for the output signal y
is Fs. The ratio Fs/Fd must be an integer. In the course of filtering,
rcosflt upsamples the data by a factor of Fs/Fd, by inserting zeros
between samples. The order of the filter is 1+2*delay*Fs/Fd, where
delay is 3 by default. If x is a vector, then the sizes of x and y are
related by this equation.

15-287

rcosflt

length(y) = (length(x) + 2 * delay)*Fs/Fd

Otherwise, y is a matrix, each of whose columns is the result of filtering
the corresponding column of x.

y = rcosflt(x,Fd,Fs,'filter_type',r,delay,tol) designs a raised
cosine FIR or IIR filter and then filters the input signal x using it. The
ratio Fs/Fd must be an integer. r is the rolloff factor for the filter, a real
number in the range [0, 1]. delay is the filter’s group delay, measured in
input samples. The actual group delay in the filter design is delay/Fd
seconds. The input tol is the tolerance in the IIR filter design. FIR
filter design does not use tol.

The characteristics of x, Fd, Fs, and y are as in the first syntax.

The fourth input argument, ’filter_type’, is a string that determines
the type of filter that rcosflt should design. Use one of the values
in the table below.

Values of filter_type to Determine the Type of Filter

Type of Filter Value of filter_type

FIR raised cosine filter fir or fir/normal

IIR raised cosine filter iir or iir/normal

Square-root FIR raised cosine
filter

fir/sqrt

Square-root IIR raised cosine
filter

iir/sqrt

y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol) is the same as
the previous syntax, except that it assumes that x has sample frequency
Fs. This syntax does not upsample x any further. If x is a vector, then
the relative sizes of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

15-288

rcosflt

As before, if x is a nonvector matrix, then y is a matrix each of whose
columns is the result of filtering the corresponding column of x.

Specifying the Filter Using Input Arguments

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den) filters the
input signal x using a filter whose transfer function numerator and
denominator are given in num and den, respectively. If filter_type
includes fir, then omit den. This syntax uses the same arguments x,
Fd, Fs, and filter_type as explained in the first and second syntaxes
above.

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay) uses
delay in the same way that the rcosine function uses it. This syntax
assumes that the filter described by num, den, and delay was designed
using rcosine.

As before, if x is a nonvector matrix, then y is a matrix each of whose
columns is the result of filtering the corresponding column of x.

y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...) is the
same as the earlier syntaxes, except that it assumes that x has sample
frequency Fs instead of Fd. This syntax does not upsample x any
further. If x is a vector, then the relative sizes of x and y are related by
this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

Additional Output

[y,t] = rcosflt(...) outputs t, a vector that contains the sampling
time points of y.

See Also rcosine, rcosfir, rcosiir, rcosdemo, Chapter 9, “Special Filters”

References [1] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.

15-289

rcosiir

Purpose Design a raised cosine IIR filter

Syntax [num,den] = rcosiir(R,T_delay,rate,T,tol)
[num,den] = rcosiir(R,T_delay,rate,T,tol,filter_type)
rcosiir(...)
rcosiir(...,colr)
[num,den,sample_time] = rcosiir(...)

Optional
Inputs

Input Default Value

T_delay 3

rate 5

T 1

tol 0.01

Description The rcosiir function designs the same filters that the rcosine function
designs when the latter’s type_flag argument includes 'iir'. However,
rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

[num,den] = rcosiir(R,T_delay,rate,T,tol) designs an IIR
approximation of an FIR raised cosine filter, and returns the numerator
and denominator of the IIR filter. The filter’s rolloff factor is R, a real
number between 0 and 1, inclusive. T is the symbol period in seconds.
The filter’s group delay is T_delay symbol periods. rate is the number
of sample points in each interval of duration T. rate must be greater
than 1. The input sample rate is T samples per second, while the output
sample rate is T*rate samples per second. If tol is an integer greater

15-290

rcosiir

than 1, then it becomes the order of the IIR filter; if tol is less than 1,
then it indicates the relative tolerance for rcosiir to use when selecting
the order based on the singular values.

The arguments T_delay, rate, T, and tol are optional inputs whose
default values are 3, 5, 1, and 0.01, respectively.

[num,den] = rcosiir(R,T_delay,rate,T,tol,filter_type) designs
a square-root raised cosine filter if filter_type is 'sqrt'. If filter_type
is ’normal’ then this syntax is the same as the previous one.

rcosiir(...) plots the time and frequency responses of the raised
cosine filter.

rcosiir(...,colr) uses the string colr to determine the plotting color.
The choices for colr are the same as those listed for the plot function.

[num,den,sample_time] = rcosiir(...) returns the transfer function
and the sample time of the IIR filter.

Examples The script below compares different values of T_delay.

rcosiir(0,10);
subplot(211); hold on;
subplot(212); hold on;
col = ['r-';'g-';'b-';'m-';'c-';'w-'];
R = [8,6,4,3,2,1];
for ii = R

rcosiir(0,ii,[],[],[],[],col(find(R==ii),:));
end;

This example shows how the filter’s frequency response more closely
approximates that of the ideal raised cosine filter as T_delay increases.

See Also rcosfir, rcosflt, rcosine, rcosdemo, Chapter 9, “Special Filters”

References [1] Kailath, Thomas, Linear Systems, Englewood Cliffs, N.J.,
Prentice-Hall, 1980.

15-291

rcosiir

[2] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.

15-292

rcosine

Purpose Design a raised cosine filter

Syntax num = rcosine(Fd,Fs)
[num,den] = rcosine(Fd,Fs,type_flag)
[num,den] = rcosine(Fd,Fs,type_flag,r)
[num,den] = rcosine(Fd,Fs,type_flag,r,delay)
[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol)

Description num = rcosine(Fd,Fs) designs a finite impulse response (FIR) raised
cosine filter and returns its transfer function. The digital input signal
has sampling frequency Fd. The sampling frequency for the filter is Fs.
The ratio Fs/Fd must be a positive integer greater than 1. The default
rolloff factor is .5. The filter’s group delay, which is the time between
the input to the filter and the filter’s peak response, is three input
samples. Equivalently, the group delay is 3/Fd seconds.

[num,den] = rcosine(Fd,Fs,type_flag) designs a raised cosine filter
using directions in the string variable type_flag. Filter types are listed
in the table below, along with the corresponding values of type_flag.

Types of Filter and Corresponding Values of type_flag

Type of Filter Value of type_flag

Finite impulse response (FIR) 'default' or 'fir/normal'

Infinite impulse response (IIR) 'iir' or ’'iir/normal'’

Square-root raised cosine FIR 'sqrt' or 'fir/sqrt'

Square-root raised cosine IIR 'iir/sqrt'

The default tolerance value in IIR filter design is 0.01.

[num,den] = rcosine(Fd,Fs,type_flag,r) specifies the rolloff factor,
r. The rolloff factor is a real number in the range [0, 1].

[num,den] = rcosine(Fd,Fs,type_flag,r,delay) specifies the filter’s
group delay, measured in input samples. delay is a positive integer.
The actual group delay in the filter design is delay/Fd seconds.

15-293

rcosine

[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol) specifies the
tolerance in the IIR filter design. FIR filter design does not use tol.

See Also rcosflt, rcosiir, rcosfir, rcosdemo, Chapter 9, “Special Filters”

References [1] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.

15-294

rectpulse

Purpose Rectangular pulse shaping

Syntax y = rectpulse(x,nsamp)

Description y = rectpulse(x,nsamp) applies rectangular pulse shaping to x
to produce an output signal having nsamp samples per symbol.
Rectangular pulse shaping means that each symbol from x is repeated
nsamp times to form the output y. If x is a matrix with multiple rows,
then the function treats each column as a channel and processes the
columns independently.

Note To insert zeros between successive samples of x instead of
repeating the samples of x, use the upsample function instead.

Examples An example in “Combining Pulse Shaping and Filtering with
Modulation” on page 8-11 uses this function in conjunction with
modulation.

The code below processes two independent channels, each containing
three symbols of data. In the pulse-shaped matrix y, each symbol
contains four samples.

nsamp = 4; % Number of samples per symbol
nsymb = 3; % Number of symbols
ch1 = randint(nsymb,1,2,68521); % Random binary channel
ch2 = [1:nsymb]';
x = [ch1 ch2] % Two-channel signal
y = rectpulse(x,nsamp)

The output is below. In y, each column corresponds to one channel
and each row corresponds to one sample. Also, the first four rows of y
correspond to the first symbol, the next four rows of y correspond to the
second symbol, and the last four rows of y correspond to the last symbol.

15-295

rectpulse

x =

1 1
1 2
0 3

y =

1 1
1 1
1 1
1 1
1 2
1 2
1 2
1 2
0 3
0 3
0 3
0 3

See Also intdump, upsample, rcosflt

15-296

reset (channel)

Purpose Reset channel object

Syntax reset(chan)
reset(chan,randstate)

Description reset(chan) resets the channel object chan, initializing the PathGains
and NumSamplesProcessed properties as well as internal filter states.
This syntax is useful when you want the effect of creating a new
channel.

reset(chan,randstate) resets the channel object chan and initializes
the state of the random number generator that the channel uses.
randstate is a two-element column vector. This syntax is useful when
you want to repeat previous numerical results that started from a
particular state.

Example The example below shows how to get repeatable results. The example
chooses a state for the random number generator immediately after
defining the channel object and later resets the random number
generator to that state.

% Set up channel.
% Assume you want to maintain continuity
% from one filtering operation to the next, except
% when you explicitly reset the channel.
c = rayleighchan(1e-4,100);
reset(c,[11; 13]); % Choose arbitrary state.
c.ResetBeforeFiltering = 0;

% Filter some data.
sig = randint(100,1);
y1 = [filter(c,sig(1:50)) filter(c,sig(51:end))];

% Try to repeat the results.
reset(c,[11; 13]); % Use same state as before.
y2 = [filter(c,sig(1:50)) filter(c,sig(51:end))];

15-297

reset (channel)

isequal(y1,y2) % y1 and y2 should be the same.

The output is below.

ans =

1

See Also rayleighchan, ricianchan, filter, “Fading Channels” on page 10-6

15-298

reset (equalizer)

Purpose Reset equalizer object

Syntax reset(eqobj)

Description reset(eqobj) resets the equalizer object eqobj, initializing the
Weights, WeightInputs, and NumSamplesProcessed properties as well
as adaptive algorithm states. If eqobj is a CMA equalizer, then reset
does not change the Weights property.

See Also dfe, equalize, lineareq, Chapter 11, “Equalizers”

15-299

ricianchan

Purpose Construct a Rician fading channel object

Syntax chan = ricianchan(ts,fd,k)
chan = ricianchan(ts,fd,k,tau,pdb)
chan = ricianchan

Description chan = ricianchan(ts,fd,k) constructs a frequency-flat (“single
path”) Rician fading channel object. ts is the sample time of the input
signal, in seconds. fd is the maximum Doppler shift, in Hertz. k is
the Rician K-factor. In this channel, the specular component has zero
phase and the phase does not change with the Doppler shift. You can
model the effect of the channel on a signal x by using the syntax y =
filter(chan,x).

chan = ricianchan(ts,fd,k,tau,pdb) constructs a frequency-selective
(“multiple path”) fading channel object that models the first discrete
path as a Rician fading process and each of the remaining discrete
paths as an independent Rayleigh fading process. tau is a vector of
path delays, each specified in seconds. pdb is a vector of average path
gains, each specified in dB.

chan = ricianchan constructs a frequency-flat channel object with no
Doppler shift and a K-factor of 1. This is a static channel. The sample
time of the input signal is irrelevant for frequency-flat static channels.

Properties

The tables below describe the properties of the channel object, chan,
that you can set and that MATLAB sets automatically. To learn how
to view or change the values of a channel object, see “Viewing Object
Properties” on page 10-9 or “Changing Object Properties” on page 10-10.

15-300

ricianchan

Writeable Properties

Property Description

InputSamplePeriod Sample period of the signal on
which the channel acts, measured
in seconds

MaxDopplerShift Maximum Doppler shift of the
channel, in Hz

KFactor Rician K-factor (scalar) for first
path

PathDelays Vector listing the delays of the
discrete paths, in seconds

AvgPathGaindB Vector listing the average gain of
the discrete paths, in dB

NormalizePathGains If 1, the Rayleigh fading process
is normalized such that the
expected value of the path gains’
total power is 1.

ResetBeforeFiltering If 1, each call to filter resets the
state of chan before filtering. If
0, the fading process maintains
continuity from one call to the
next.

15-301

ricianchan

Read-Only Properties

Property Description When MATLAB
Sets or Updates
Value

ChannelType Fixed value, 'Rician' When you create
object

PathGains Complex vector listing
the current gains of the
discrete paths. When
you create or reset chan,
PathGains is a random
vector influenced by
AvgPathGaindB and
NormalizePathGains.

When you create
object, reset object,
or use it to filter a
signal

ChannelFilterDelay Delay of the channel
filter, measured in
samples

When you
create object or
change ratio of
InputSamplePeriod
to PathDelays

NumSamplesProcessed Number of samples the
channel processed since
the last reset. When you
create or reset chan, this
property value is 0.

When you create
object, reset object,
or use it to filter a
signal

Relationships Among Properties

The PathDelays and AvgPathGaindB properties of the channel object
must always have the same vector length because this length equals the
number of discrete paths of the channel. If you change the value of one
of these properties, then MATLAB truncates or zero-pads the value of
the other property if necessary to adjust its vector length.

15-302

ricianchan

If you change the value of PathDelays or AvgPathGaindB, MATLAB
might also change the values of read-only properties such as PathGains
and ChannelFilterDelay.

Examples The example in “Quasi-Static Channel Modeling” on page 10-19 uses
this function.

Algorithm This function produces a model for a Rayleigh channel, adds a constant
to the first path gain, and then normalizes to correct the set of average
path gains. To learn about the algorithm for producing a Rayleigh
channel model, see Algorithm on page 283 on the rayleighchan
reference page.

See Also rayleighchan, filter, reset, “Fading Channels” on page 10-6

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.

15-303

rls

Purpose Construct a recursive least squares (RLS) adaptive algorithm object

Syntax alg = rls(forgetfactor)
alg = rls(forgetfactor,invcorr0)

Description The rls function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing
a signal, see “Using Adaptive Equalizer Functions and Objects” on
page 11-8.

alg = rls(forgetfactor) constructs an adaptive algorithm object
based on the recursive least squares (RLS) algorithm. The forgetting
factor is forgetfactor, a real number between 0 and 1. The inverse
correlation matrix is initialized to a scalar value.

alg = rls(forgetfactor,invcorr0) sets the initialization parameter
for the inverse correlation matrix. This scalar value is used to initialize
or reset the diagonal elements of the inverse correlation matrix.

Properties

The table below describes the properties of the RLS adaptive algorithm
object. To learn how to view or change the values of an adaptive
algorithm object, see “Accessing Properties of an Adaptive Algorithm”
on page 11-12.

Property Description

AlgType Fixed value, 'RLS'

ForgetFactor Forgetting factor

InvCorrInit Scalar value used to initialize or
reset the diagonal elements of the
inverse correlation matrix

Also, when you use this adaptive algorithm object to create an equalizer
object (via the lineareq function or dfe function), the equalizer object

15-304

rls

has an InvCorrMatrix property that represents the inverse correlation
matrix for the RLS algorithm. The initial value of InvCorrMatrix is
InvCorrInit*eye(N), where N is the total number of equalizer weights.

Examples For examples that use this function, see “Defining an Equalizer Object”
on page 11-13 and “Example: Adaptive Equalization Within a Loop”
on page 11-23.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes” on page 11-3, define w as the vector of all weights wi
and define u as the vector of all inputs ui. Based on the current set of
inputs, u, and the current inverse correlation matrix, P, this adaptive
algorithm first computes the Kalman gain vector, K:

K
Pu

u PuH=
+()ForgetFactor

where H denotes the Hermitian transpose.

Then the new inverse correlation matrix is given by

(ForgetFactor)-1(P – KuHP)

and the new set of weights is given by

w + K*e

where the * operator denotes the complex conjugate.

See Also lms, signlms, normlms, varlms, lineareq, dfe, equalize, Chapter 11,
“Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

15-305

rls

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

15-306

rsdec

Purpose Reed-Solomon decoder

Syntax decoded = rsdec(code,n,k)
decoded = rsdec(code,n,k,genpoly)
decoded = rsdec(...,paritypos)
[decoded,cnumerr] = rsdec(...)
[decoded,cnumerr,ccode] = rsdec(...)

Description decoded = rsdec(code,n,k) attempts to decode the received signal
in code using an [n,k] Reed-Solomon decoding process with the
narrow-sense generator polynomial. code is a Galois array of symbols
having m bits each. Each n-element row of code represents a corrupted
systematic codeword, where the parity symbols are at the end and the
leftmost symbol is the most significant symbol. n is at most 2m-1. If n is
not exactly 2m-1, then rsdec assumes that code is a corrupted version
of a shortened code.

In the Galois array decoded, each row represents the attempt at
decoding the corresponding row in code. A decoding failure occurs if
rsdec detects more than (n-k)/2 errors in a row of code. In this case,
rsdec forms the corresponding row of decoded by merely removing n-k
symbols from the end of the row of code.

decoded = rsdec(code,n,k,genpoly) is the same as the syntax above,
except that a nonempty value of genpoly specifies the generator
polynomial for the code. In this case, genpoly is a Galois row vector that
lists the coefficients, in order of descending powers, of the generator
polynomial. The generator polynomial must have degree n-k. To use
the default narrow-sense generator polynomial, set genpoly to [].

decoded = rsdec(...,paritypos) specifies whether the parity symbols
in code were appended or prepended to the message in the coding
operation. The string paritypos can be either 'end' or 'beginning'. The
default is 'end'. If paritypos is 'beginning', then a decoding failure
causes rsdec to remove n-k symbols from the beginning rather than
the end of the row.

[decoded,cnumerr] = rsdec(...) returns a column vector cnumerr,
each element of which is the number of corrected errors in the

15-307

rsdec

corresponding row of code. A value of -1 in cnumerr indicates a
decoding failure in that row in code.

[decoded,cnumerr,ccode] = rsdec(...) returns ccode, the corrected
version of code. The Galois array ccode has the same format as
code. If a decoding failure occurs in a certain row of code, then the
corresponding row in ccode contains that row unchanged.

Examples The example below encodes three message words using a (7,3)
Reed-Solomon encoder. It then corrupts the code by introducing one
error in the first codeword, two errors in the second codeword, and
three errors in the third codeword. Then rsdec tries to decode the
corrupted code.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Word lengths for code
msg = gf([2 7 3; 4 0 6; 5 1 1],m); % Three rows of m-bit symbols
code = rsenc(msg,n,k);
errors = gf([2 0 0 0 0 0 0; 3 4 0 0 0 0 0; 5 6 7 0 0 0 0],m);
noisycode = code + errors;
[dec,cnumerr] = rsdec(noisycode,n,k)

The output is below.

dec = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

2 7 3
4 0 6
0 7 6

cnumerr =

1
2

-1

15-308

rsdec

The output shows that rsdec successfully corrects the errors in the
first two codewords and recovers the first two original message words.
However, a (7,3) Reed-Solomon code can correct at most two errors
in each word, so rsdec cannot recover the third message word. The
elements of the vector cnumerr indicate the number of corrected errors
in the first two words and also indicate the decoding failure in the
third word.

For additional examples, see “Creating and Decoding Reed-Solomon
Codes” on page 6-7.

Algorithm rsdec uses the Berlekamp-Massey decoding algorithm. For information
about this algorithm, see the works listed in References on page 309
below.

Limitations n and k must differ by an even integer. n must be between 3 and 65535.

See Also rsenc, gf, rsgenpoly, “Block Coding” on page 6-2

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.

15-309

rsdecof

Purpose Decode an ASCII file that was encoded using Reed-Solomon code

Syntax rsdecof(file_in,file_out); rsdecof(file_in,file_out,err_cor);

Description This function is the inverse process of the function rsencof in that it
decodes a file that rsencof encoded.

rsdecof(file_in,file_out) decodes the ASCII file file_in that was
previously created by the function rsencof using an error-correction
capability of 5. The decoded message is written to file_out. Both
file_in and file_out are string variables.

Note If the number of characters in file_in is not an integer multiple
of 127, then the function appends char(4) symbols to the data it must
decode. If you encode and then decode a file using rsencof and rsdecof,
respectively, then the decoded file might have char(4) symbols at the
end that the original file does not have.

rsdecof(file_in,file_out,err_cor) is the same as the first syntax,
except that err_cor specifies the error-correction capability for
each block of 127 codeword characters. The message length is 127
- 2 *err_cor. The value in err_cor must match the value used in
rsencof when file_in was created.

Examples An example is on the reference page for rsencof.

See Also rsencof, “Block Coding” on page 6-2

15-310

rsenc

Purpose Reed-Solomon encoder

Syntax code = rsenc(msg,n,k)
code = rsenc(msg,n,k,genpoly)
code = rsenc(...,paritypos)

Description code = rsenc(msg,n,k) encodes the message in msg using an [n,k]
Reed-Solomon code with the narrow-sense generator polynomial. msg is
a Galois array of symbols having m bits each. Each k-element row of
msg represents a message word, where the leftmost symbol is the most
significant symbol. n is at most 2m-1. If n is not exactly 2m-1, then rsenc
uses a shortened Reed-Solomon code. Parity symbols are at the end of
each word in the output Galois array code.

code = rsenc(msg,n,k,genpoly) is the same as the syntax above,
except that a nonempty value of genpoly specifies the generator
polynomial for the code. In this case, genpoly is a Galois row vector that
lists the coefficients, in order of descending powers, of the generator
polynomial. The generator polynomial must have degree n-k. To use
the default narrow-sense generator polynomial, set genpoly to [].

code = rsenc(...,paritypos) specifies whether rsenc appends or
prepends the parity symbols to the input message to form code. The
string paritypos can be either 'end' or 'beginning'. The default is 'end'.

Examples The example below encodes two message words using a (7,3)
Reed-Solomon encoder.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Word lengths for code
msg = gf([2 7 3; 4 0 6],m); % Two rows of m-bit symbols
code = rsenc(msg,n,k)

The output is below.

code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

15-311

rsenc

2 7 3 3 6 7 6
4 0 6 4 2 2 0

For additional examples, see “Representing Words for Reed-Solomon
Codes” on page 6-5 and “Creating and Decoding Reed-Solomon Codes”
on page 6-7.

Limitations n and k must differ by an even integer. n must be between 3 and 65535.

See Also rsdec, gf, rsgenpoly, “Block Coding” on page 6-2

15-312

rsencof

Purpose Encode an ASCII file using Reed-Solomon code

Syntax rsencof(file_in,file_out); rsencof(file_in,file_out,err_cor);

Description rsencof(file_in,file_out) encodes the ASCII file file_in using
(127, 117) Reed-Solomon code. The error-correction capability of this
code is 5 for each block of 127 codeword characters. This function writes
the encoded text to the file file_out. Both file_in and file_out are
string variables.

rsencof(file_in,file_out,err_cor) is the same as the first
syntax, except that err_cor specifies the error-correction capability
for each block of 127 codeword characters. The message length is
127 - 2 * err_cor.

Note If the number of characters in file_in is not an integer multiple
of 127 - 2 * err_cor, then the function appends char(4) symbols to
file_out.

Examples The file matlabroot/toolbox/comm/comm/oct2dec.m contains text help
for the oct2dec function in this toolbox. The commands below encode
the file using rsencof and then decode it using rsdecof.

file_in = [matlabroot '/toolbox/comm/comm/oct2dec.m'];
file_out = 'encodedfile'; % Or use another filename
rsencof(file_in,file_out) % Encode the file.

file_in = file_out;
file_out = 'decodedfile'; % Or use another filename
rsdecof(file_in,file_out) % Decode the file.

To see the original file and the decoded file in the MATLAB workspace,
use the commands below (or similar ones if you modified the filenames
above).

15-313

rsencof

type oct2dec.m
type decodedfile

See Also rsdecof, “Block Coding” on page 6-2

15-314

rsgenpoly

Purpose Generator polynomial of Reed-Solomon code

Syntax genpoly = rsgenpoly(n,k)
genpoly = rsgenpoly(n,k,prim_poly)
genpoly = rsgenpoly(n,k,prim_poly,b)
[genpoly,t] = rsgenpoly(...)

Description genpoly = rsgenpoly(n,k) returns the narrow-sense generator
polynomial of a Reed-Solomon code with codeword length n and
message length k. The codeword length n must have the form 2m-1
for some integer m, and n-k must be an even integer. The output
genpoly is a Galois row vector that represents the coefficients of the
generator polynomial in order of descending powers. The narrow-sense
generator polynomial is (X - A1)(X - A2)...(X - A2t) where A is a root of
the default primitive polynomial for the field GF(n+1) and t is the code’s
error-correction capability, (n-k)/2.

genpoly = rsgenpoly(n,k,prim_poly) is the same as the syntax
above, except that prim_poly specifies the primitive polynomial for
GF(n+1) that has A as a root. prim_poly is an integer whose binary
representation indicates the coefficients of the primitive polynomial. To
use the default primitive polynomial GF(n+1), set prim_poly to [].

genpoly = rsgenpoly(n,k,prim_poly,b) returns the generator
polynomial (X - Ab)(X - Ab+1)...(X - Ab+2t-1) where b is an integer, A is a
root of prim_poly and t is the code’s error-correction capability, (n-k)/2.

[genpoly,t] = rsgenpoly(...) returns t, the error-correction
capability of the code.

Examples The examples below create Galois row vectors that represent generator
polynomials for a [7,3] Reed-Solomon code. The vectors g and g2 both
represent the narrow-sense generator polynomial, but with respect to
different primitive elements A. More specifically, g2 is defined such that
A is a root of the primitive polynomial D3 + D2 + 1 for GF(8), not of
the default primitive polynomial D3 + D + 1. The vector g3 represents
the generator polynomial (X - A3)(X - A4)(X - A5)(X - A6), where A is a
root of D3 + D2 + 1 in GF(8).

15-315

rsgenpoly

g = rsgenpoly(7,3)
g2 = rsgenpoly(7,3,13) % Use nondefault primitive polynomial.
g3 = rsgenpoly(7,3,13,3) % Use b = 3.

The output is below.

g = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1 3 1 2 3

g2 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

1 4 5 1 5

g3 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

1 7 1 6 7

As another example, the command below shows that the default
narrow-sense generator polynomial for a [15,11] Reed-Solomon code is
X4 + (A3 + A2 + 1)X3 + (A3 + A2)X2 + A3X + (A2 + A + 1) where A is a root of
the default primitive polynomial for GF(16).

gp = rsgenpoly(15,11)

15-316

rsgenpoly

gp = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

1 13 12 8 7

For additional examples, see “Parameters for Reed-Solomon Codes”
on page 6-5.

Limitations n and k must differ by an even integer. The maximum allowable value
of n is 65535.

See Also gf, rsenc, rsdec, “Block Coding” on page 6-2

15-317

scatterplot

Purpose Generate a scatter plot

Syntax scatterplot(x)
scatterplot(x,n)
scatterplot(x,n,offset)
scatterplot(x,n,offset,plotstring)
scatterplot(x,n,offset,plotstring,h)
h = scatterplot(...)

Description scatterplot(x) produces a scatter plot for the signal x. The
interpretation of x depends on its shape and complexity:

• If x is a real two-column matrix, then scatterplot interprets the
first column as in-phase components and the second column as
quadrature components.

• If x is a complex vector, then scatterplot interprets the real part
as in-phase components and the imaginary part as quadrature
components.

• If x is a real vector, then scatterplot interprets it as a real signal.

scatterplot(x,n) is the same as the first syntax, except that the
function plots every nth value of the signal, starting from the first value.
That is, the function decimates x by a factor of n before plotting.

scatterplot(x,n,offset) is the same as the first syntax, except
that the function plots every nth value of the signal, starting from the
(offset+1)st value in x.

scatterplot(x,n,offset,plotstring) is the same as the syntax
above, except that plotstring determines the plotting symbol, line
type, and color for the plot. plotstring is a string whose format and
meaning are the same as in the plot function.

scatterplot(x,n,offset,plotstring,h) is the same as the syntax
above, except that the scatter plot is in the figure whose handle is
h, rather than a new figure. h must be a handle to a figure that

15-318

scatterplot

scatterplot previously generated. To plot multiple signals in the same
figure, use hold on.

h = scatterplot(...) is the same as the earlier syntaxes, except
that h is the handle to the figure that contains the scatter plot.

Examples See “Example: Scatter Plots” on page 3-22 or the example on the
reference page for qamdemod. Both examples illustrate how to plot
multiple signals in a single scatter plot.

For an online demonstration, type playshow scattereyedemo.

See Also eyediagram, plot, scattereyedemo, scatter, “Scatter Plots” on page
3-22

15-319

semianalytic

Purpose Calculate bit error rate using the semianalytic technique

Syntax ber = semianalytic(txsig,rxsig,modtype,M,Nsamp)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo)
[ber,avgampl,avgpower] = semianalytic(...)

Graphical
Interface

As an alternative to the semianalytic function, invoke the BERTool
GUI (bertool) and use the Semianalytic panel.

Description ber = semianalytic(txsig,rxsig,modtype,M,Nsamp) returns the
bit error rate (BER) of a system that transmits the complex baseband
vector signal txsig and receives the noiseless complex baseband vector
signal rxsig. Each of these signals has Nsamp samples per symbol.
Nsamp is also the sampling rate of txsig and rxsig, in Hz. The function
assumes that rxsig is the input to the receiver filter, and the function
filters rxsig with an ideal integrator. modtype is the modulation type
of the signal and M is the alphabet size. The table below lists the valid
values for modtype and M.

Modulation
Scheme

Value of modtype Valid Values of M

Differential phase
shift keying (DPSK)

'dpsk' 2, 4

Minimum shift
keying (MSK) with
differential encoding

'msk/diff' 2

Minimum shift
keying (MSK) with
nondifferential
encoding

'msk/nondiff' 2

15-320

semianalytic

Modulation
Scheme

Value of modtype Valid Values of M

Phase shift
keying (PSK)
with differential
encoding, where the
phase offset of the
constellation is 0

'psk/diff' 2, 4

Phase shift
keying (PSK) with
nondifferential
encoding, where the
phase offset of the
constellation is 0

'psk/nondiff' 2, 4, 8, 16, 32, or 64

Offset quaternary
phase shift keying
(OQPSK)

'oqpsk' 4

Quadrature
amplitude
modulation (QAM)

'qam' 4, 8, 16, 32, 64, 128,
256, 512, 1024

Note The output ber is an upper bound on the BER in these cases:

• DQPSK (modtype = 'dpsk', M = 4)

• Cross QAM (modtype = 'qam', M not a perfect square). In this case, note
that the upper bound used here is slightly tighter than the upper
bound used for cross QAM in the berawgn function.

When the function computes the BER, it assumes that symbols are
Gray-coded. The function calculates the BER for values of Eb/N0 in the

15-321

semianalytic

range of [0:20] dB and returns a vector of length 21 whose elements
correspond to the different Eb/N0 levels.

Note You must use a sufficiently long vector txsig, or else the
calculated BER will be inaccurate. If the system’s impulse response is L
symbols long, then the length of txsig should be at least ML. A common
approach is to start with an augmented binary pseudonoise (PN)
sequence of total length (log2M)M

L. An augmented PN sequence is a PN
sequence with an extra zero appended, which makes the distribution
of ones and zeros equal.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den) is the
same as the previous syntax, except that the function filters rxsig with
a receiver filter instead of an ideal integrator. The transfer function of
the receiver filter is given in descending powers of z by the vectors
num and den.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo) is the
same as the first syntax, except that EbNo represents Eb/N0, the ratio of
bit energy to noise power spectral density, in dB. If EbNo is a vector, then
the output ber is a vector of the same size, whose elements correspond
to the different Eb/N0 levels.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo)
combines the functionality of the previous two syntaxes.

[ber,avgampl,avgpower] = semianalytic(...) returns the mean
complex signal amplitude and the mean power of rxsig after filtering it
by the receiver filter and sampling it at the symbol rate.

Examples A typical procedure for implementing the semi-analytic technique is in
“Procedure for the Semianalytic Technique” on page 3-6. Sample code is
in “Example: Using the Semianalytic Technique” on page 3-7.

Limitations The function makes several important assumptions about the
communication system. See “When to Use the Semianalytic Technique”

15-322

semianalytic

on page 3-5 to find out whether your communication system is suitable
for the semianalytic technique and the semianalytic function.

See Also noisebw, qfunc, “Performance Results via the Semianalytic Technique”
on page 3-5

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, New York, Plenum Press, 1992.

[2] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally
Efficient Modulation,” IEEE Communications Magazine, July, 1979,
pp. 14-22.

15-323

shift2mask

Purpose Convert shift to mask vector for a shift register configuration

Syntax mask = shift2mask(prpoly,shift)

Description mask = shift2mask(prpoly,shift) returns the mask that is
equivalent to the shift (or offset) specified by shift, for a linear
feedback shift register whose connections are specified by the primitive
polynomial prpoly. The prpoly input can have one of these formats:

• A binary vector that lists the coefficients of the primitive polynomial
in order of descending powers

• An integer scalar whose binary representation gives the coefficients
of the primitive polynomial, where the least significant bit is the
constant term

The shift input is an integer scalar.

Note To save time, shift2mask does not check that prpoly is primitive.
If it is not primitive, then the output is not meaningful. To find
primitive polynomials, use primpoly or see [2].

Definition of Equivalent Mask

The equivalent mask for the shift s is the remainder after dividing
the polynomial xs by the primitive polynomial. The vector mask
represents the remainder polynomial by listing the coefficients in order
of descending powers.

Shifts, Masks, and Pseudonoise Sequence Generators

Linear feedback shift registers are part of an implementation of a
pseudonoise sequence generator. Below is a schematic diagram of a
pseudonoise sequence generator. All adders perform addition modulo 2.

15-324

shift2mask

m mm

+

g 1g r-1
g r-2

+ +

g r
g 0

Output

0r-1 r-2

The primitive polynomial determines the state of each switch labeled
gk, while the mask determines the state of each switch labeled mk. The
lower half of the diagram shows the implementation of the shift, which
delays the starting point of the output sequence. If the shift is zero,
then the m0 switch is closed while all other mk switches are open. The
table below indicates how the shift affects the shift register’s output.

T = 0 T = 1 T = 2 ... T = s T = s+1

Shift =
0

x0 x1 x2 ... xs xs+1

Shift =
s > 0

xs xs+1 xs+2 ... x2s x2s+1

If you have the Communications Blockset and want to generate a
pseudonoise sequence in a Simulink model, see the reference page for
the PN Sequence Generator block in the blockset’s documentation set.

15-325

shift2mask

Examples The command below converts a shift of 5 into the equivalent mask
x3 +x + 1, for the linear feedback shift register whose connections are
specified by the primitive polynomial x4 + x3 + 1.

mk = shift2mask([1 1 0 0 1],5)

mk =

1 0 1 1

See Also mask2shift, deconv, isprimitive, primpoly

References [1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook,
Boston, Artech House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum
Communications Handbook, New York, McGraw-Hill, 1994.

15-326

signlms

Purpose Construct a signed least mean square (LMS) adaptive algorithm object

Syntax alg = signlms(stepsize)
alg = lms(stepsize,algtype)

Description The signlms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing
a signal, see “Using Adaptive Equalizer Functions and Objects” on
page 11-8.

alg = signlms(stepsize) constructs an adaptive algorithm object
based on the signed least mean square (LMS) algorithm with a step
size of stepsize.

alg = lms(stepsize,algtype) constructs an adaptive algorithm object
of type algtype from the family of signed LMS algorithms. The table
below lists the possible values of algtype.

Value of algtype Type of Signed LMS Algorithm

'Sign LMS' Sign LMS (default)

'Signed Regressor LMS' Signed regressor LMS

'Sign Sign LMS' Sign-sign LMS

Properties

The table below describes the properties of the signed LMS adaptive
algorithm object. To learn how to view or change the values of an
adaptive algorithm object, see “Accessing Properties of an Adaptive
Algorithm” on page 11-12.

15-327

signlms

Property Description

AlgType The type of signed LMS
algorithm, corresponding to
the algtype input argument. You
cannot change the value of this
property after creating the object.

StepSize LMS step size parameter, a
nonnegative real number

LeakageFactor LMS leakage factor, a real
number between 0 and 1. A value
of 1 corresponds to a conventional
weight update algorithm, while
a value of 0 corresponds to a
memoryless update algorithm.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes” on page 11-3, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set
of weights, w, this adaptive algorithm creates the new set of weights
given by

• (LeakageFactor) w + (StepSize) u*sgn(Re(e)), for sign LMS

• (LeakageFactor) w + (StepSize) sgn(Re(u)) Re(e), for signed
regressor LMS

• (LeakageFactor) w + (StepSize) sgn(Re(u)) sgn(Re(e)), for sign-sign
LMS

where the * operator denotes the complex conjugate and sgn denotes
the signum function (sign in MATLAB).

See Also lms, normlms, varlms, rls, cma, lineareq, dfe, equalize, Chapter 11,
“Equalizers”

15-328

signlms

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

15-329

ssbdemod

Purpose Single sideband amplitude demodulation

Syntax z = ssbdemod(y,Fc,Fs)
z = ssbdemod(y,Fc,Fs,ini_phase)
z = ssbdemod(y,Fc,Fs,ini_phase,num,den)

Description For All Syntaxes

z = ssbdemod(y,Fc,Fs) demodulates the single sideband amplitude
modulated signal y from the carrier signal having frequency Fc (Hz).
The carrier signal and y have sampling rate Fs (Hz). The modulated
signal has zero initial phase, and can be an upper- or lower-sideband
signal. The demodulation process uses the lowpass filter specified by
[num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW
is the bandwidth of the original signal that was modulated.

z = ssbdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the
modulated signal in radians.

z = ssbdemod(y,Fc,Fs,ini_phase,num,den) specifies the numerator
and denominator of the lowpass filter used in the demodulation.

Examples The code below shows that ssbdemod can demodulate an upper-sideband
or lower-sideband signal.

Fc = 12000; Fs = 270000;

t = [0:1/Fs:0.01]';

s = sin(2*pi*300*t)+2*sin(2*pi*600*t);

y1 = ssbmod(s,Fc,Fs,0); % Lower-sideband modulated signal

y2 = ssbmod(s,Fc,Fs,0,'upper'); % Upper-sideband modulated signal

s1 = ssbdemod(y1,Fc,Fs); % Demodulate lower sideband

s2 = ssbdemod(y2,Fc,Fs); % Demodulate upper sideband

% Plot results to show that the curves overlap.

figure; plot(t,s1,'r-',t,s2,'k--');

15-330

ssbdemod

legend('Demodulation of upper sideband','Demodulation of lower sideband')

See Also ssbmod, amdemod, Chapter 8, “Modulation”

15-331

ssbmod

Purpose Single sideband amplitude modulation

Syntax y = ssbmod(x,Fc,Fs)
y = ssbmod(x,Fc,Fs,ini_phase)
y = ssbmod(x,fc,fs,ini_phase,'upper')

Description y = ssbmod(x,Fc,Fs) uses the message signal x to modulate a
carrier signal with frequency Fc (Hz) using single sideband amplitude
modulation in which the lower sideband is the desired sideband. The
carrier signal and x have sample frequency Fs (Hz). The modulated
signal has zero initial phase.

y = ssbmod(x,Fc,Fs,ini_phase) specifies the initial phase of the
modulated signal in radians.

y = ssbmod(x,fc,fs,ini_phase,'upper') uses the upper sideband as
the desired sideband.

Examples An example using ssbmod is on the reference page for ammod.

See Also ssbdemod, ammod, Chapter 8, “Modulation”

15-332

symerr

Purpose Compute number of symbol errors and symbol error rate

Syntax [number,ratio] = symerr(x,y)
[number,ratio] = symerr(x,y,flg)
[number,ratio,loc] = symerr(...)

Description For All Syntaxes

The symerr function compares binary representations of elements in x
with those in y. The schematics below illustrate how the shapes of x
and y determine which elements symerr compares.

The output number is a scalar or vector that indicates the number of
elements that differ. The size of number is determined by the optional
input flg and by the dimensions of x and y. The output ratio equals
number divided by the total number of elements in the smaller input.

For Specific Syntaxes

[number,ratio] = symerr(x,y) compares the elements in x and y.
The sizes of x and y determine which elements are compared:

• If x and y are matrices of the same dimensions, then symerr compares
x and y element by element. number is a scalar. See schematic (a)
in the figure.

• If one is a row (respectively, column) vector and the other is a
two-dimensional matrix, then symerr compares the vector element
by element with each row (resp., column) of the matrix. The length

15-333

symerr

of the vector must equal the number of columns (resp., rows) in the
matrix. number is a column (resp., row) vector whose mth entry
indicates the number of elements that differ when comparing the
vector with the mth row (resp., column) of the matrix. See schematics
(b) and (c) in the figure.

[number,ratio] = symerr(x,y,flg) is similar to the previous syntax,
except that flg can override the defaults that govern which elements
symerr compares and how symerr computes the outputs. The values
of flg are ’overall’, ’column-wise’, and ’row-wise’. The table below
describes the differences that result from various combinations of
inputs. In all cases, ratio is number divided by the total number of
elements in y.

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of
Comparison

number

'overall'
(default)

Element by
element

Total number of
symbol errors

'column-wise' mth column of x
vs. mth column
of y

Row vector
whose entries
count symbol
errors in each
column

Two-dim.
matrix

'row-wise' mth row of x vs.
mth row of y

Column vector
whose entries
count symbol
errors in each
row

15-334

symerr

Shape of y flg Type of
Comparison

number

'overall' y vs. each
column of x

Total number of
symbol errors

Column vector

'column-wise'
(default)

y vs. each
column of x

Row vector
whose entries
count symbol
errors in each
column of x

'overall' y vs. each row
of x

Total number of
symbol errors

Row vector

'row-wise'
(default)

y vs. each row
of x

Column vector
whose entries
count symbol
errors in each
row of x

[number,ratio,loc] = symerr(...) returns a binary matrix loc
that indicates which elements of x and y differ. An element of loc is
zero if the corresponding comparison yields no discrepancy, and one
otherwise.

Examples On the reference page for biterr, the last example uses symerr.

The command below illustrates how symerr works when one argument
is a vector and the other is a matrix. It compares the vector [1,2,3]'
to the columns

of the matrix.

15-335

symerr

num = symerr([1 2 3]',[1 1 3 1;3 2 2 2; 3 3 8 3])

num =

1 0 2 0

As another example, the command below illustrates the use of flg to
override the default row-by-row comparison. Notice that number and
ratio are scalars.

format rat;
[number,ratio,loc] = symerr([1 2; 3 4],[1 3],'overall')

The output is below.

number =

3

ratio =

3/4

loc =

0 1
1 1

See Also biterr, “Performance Results via Simulation” on page 3-2

15-336

syndtable

Purpose Produce syndrome decoding table

Syntax t = syndtable(h)

Description t = syndtable(h) returns a decoding table for an error-correcting
binary code having codeword length n and message length k. h
is an (n-k)-by-n parity-check matrix for the code. t is a 2n-k-by-n
binary matrix. The rth row of t is an error pattern for a received
binary codeword whose syndrome has decimal integer value r-1. (The
syndrome of a received codeword is its product with the transpose of
the parity-check matrix.) In other words, the rows of t represent the
coset leaders from the code’s standard array.

When converting between binary and decimal values, the leftmost
column is interpreted as the most significant digit. This differs from the
default convention in the bi2de and de2bi commands.

Examples An example is in “Decoding Table” on page 6-22.

See Also decode, hammgen, gfcosets, “Block Coding” on page 6-2

References [1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for
Digital Communications, New York, Plenum, 1981.

15-337

varlms

Purpose Construct a variable-step-size least mean square (LMS) adaptive
algorithm object

Syntax alg = varlms(initstep,incstep,minstep,maxstep)

Description The varlms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing
a signal, see “Using Adaptive Equalizer Functions and Objects” on
page 11-8.

alg = varlms(initstep,incstep,minstep,maxstep) constructs an
adaptive algorithm object based on the variable-step-size least mean
square (LMS) algorithm. initstep is the initial value of the step size
parameter. incstep is the increment by which the step size changes
from iteration to iteration. minstep and maxstep are the limits between
which the step size can vary.

Properties

The table below describes the properties of the variable-step-size LMS
adaptive algorithm object. To learn how to view or change the values of
an adaptive algorithm object, see “Accessing Properties of an Adaptive
Algorithm” on page 11-12.

Property Description

AlgType Fixed value, 'Variable Step
Size LMS'

LeakageFactor LMS leakage factor, a real
number between 0 and 1. A value
of 1 corresponds to a conventional
weight update algorithm, while
a value of 0 corresponds to a
memoryless update algorithm.

15-338

varlms

Property Description

InitStep Initial value of step size when the
algorithm starts

IncStep Increment by which the step
size changes from iteration to
iteration

MinStep Minimum value of step size

MaxStep Maximum value of step size

Also, when you use this adaptive algorithm object to create an equalizer
object (via the lineareq or dfe function), the equalizer object has a
StepSize property. The property value is a vector that lists the current
step size for each weight in the equalizer.

Examples For an example that uses this function, see “Linked Properties of an
Equalizer Object” on page 11-14.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes” on page 11-3, define w as the vector of all current
weights wi and define u as the vector of all inputs ui. Based on the
current step size, µ, this adaptive algorithm first computes the quantity

µ0 = µ + (IncStep) Re(ggprev)

where g = ue*, gprev is the analogous expression from the previous
iteration, and the * operator denotes the complex conjugate.

Then the new step size is given by

• µ0, if it is between MinStep and MaxStep

• MinStep, if µ0 < MinStep

• MaxStep, if µ0 > MaxStep

The new set of weights is given by

15-339

varlms

(LeakageFactor) w + 2 µ g*

See Also lms, signlms, normlms, rls, cma, lineareq, dfe, equalize, Chapter
11, “Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

15-340

vec2mat

Purpose Convert a vector into a matrix

Syntax mat = vec2mat(vec,matcol)
mat = vec2mat(vec,matcol,padding)
[mat,padded] = vec2mat(...)

Description mat = vec2mat(vec,matcol) converts the vector vec into a matrix
with matcol columns, creating one row at a time. If the length of vec is
not a multiple of matcol, then extra zeros are placed in the last row of
mat. The matrix mat has ceil(length(vec)/matcol) rows.

mat = vec2mat(vec,matcol,padding) is the same as the first syntax,
except that the extra entries placed in the last row of mat are not
necessarily zeros. The extra entries are taken from the matrix padding,
in order. If padding has fewer entries than are needed, then the last
entry is used repeatedly.

[mat,padded] = vec2mat(...) returns an integer padded that
indicates how many extra entries were placed in the last row of mat.

Note vec2mat is similar to the built-in MATLAB function reshape.
However, given a vector input, reshape creates a matrix one column at
a time instead of one row at a time. Also, reshape requires the input
and output matrices to have the same number of entries, whereas
vec2mat places extra entries in the output matrix if necessary.

Examples vec = [1 2 3 4 5];
[mat,padded] = vec2mat(vec,3)
[mat2,padded2] = vec2mat(vec,4)
mat3 = vec2mat(vec,4,[10 9 8; 7 6 5; 4 3 2])

The output is below.

15-341

vec2mat

mat =

1 2 3
4 5 0

padded =

1

mat2 =

1 2 3 4
5 0 0 0

padded2 =

3

mat3 =

1 2 3 4
5 10 7 4

See Also reshape

15-342

vitdec

Purpose Convolutionally decode binary data using the Viterbi algorithm

Syntax decoded = vitdec(code,trellis,tblen,opmode,dectype)
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)
decoded = ...

vitdec(...,'cont',...,initmetric,initstates,initinputs)
[decoded,finalmetric,finalstates,finalinputs] = ...

vitdec(...,'cont',...)

Description decoded = vitdec(code,trellis,tblen,opmode,dectype) decodes
the vector code using the Viterbi algorithm. The MATLAB structure
trellis specifies the convolutional encoder that produced code; the
format of trellis is described in “Trellis Description of a Convolutional
Encoder” on page 6-34 and the reference page for the istrellis
function. code contains one or more symbols, each of which consists of
log2(trellis.numOutputSymbols) bits. Each symbol in the vector
decoded consists of log2(trellis.numInputSymbols) bits. tblen is
a positive integer scalar that specifies the traceback depth. If the
code rate is 1/2, then a typical value for tblen is about five times the
constraint length of the code.

The string opmode indicates the decoder’s operation mode and its
assumptions about the corresponding encoder’s operation. Choices are
in the table below.

15-343

vitdec

Values of opmode Input

Value Meaning

'cont' The encoder is assumed to have started at the
all-zeros state. The decoder traces back from the
state with the best metric. A delay equal to tblen
symbols elapses before the first decoded symbol
appears in the output. This mode is appropriate
when you invoke this function repeatedly and want to
preserve continuity between successive invocations.
See the continuous operation mode syntaxes below.

'term' The encoder is assumed to have both started and
ended at the all-zeros state, which is true for the
default syntax of the convenc function. The decoder
traces back from the all-zeros state. This mode
incurs no delay. This mode is appropriate when the
uncoded message (that is, the input to convenc) has
enough zeros at the end to fill all memory registers
of the encoder. If the encoder has k input streams
and constraint length vector constr (using the
polynomial description of the encoder), then “enough”
means k*max(constr-1).

'trunc' The encoder is assumed to have started at the
all-zeros state. The decoder traces back from the
state with the best metric. This mode incurs no
delay. This mode is appropriate when you cannot
assume the encoder ended at the all-zeros state and
when you do not want to preserve continuity between
successive invocations of this function.

The string dectype indicates the type of decision that the decoder
makes, and influences the type of data the decoder expects in code.
Choices are in the table below.

15-344

vitdec

Values of dectype Input

Value Meaning

'unquant' code contains real input values,
where 1 represents a logical zero
and -1 represents a logical one.

'hard' code contains binary input
values.

'soft' For soft-decision decoding, use
the syntax below. Note that
nsdec is required for soft-decision
decoding.

Syntax for Soft Decision Decoding

decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)
decodes the vector code using soft-decision decoding. code consists
of integers between 0 and 2^nsdec-1, where 0 represents the most
confident 0 and 2^nsdec-1 represents the most confident 1.

Additional Syntaxes for Continuous Operation Mode

Continuous operation mode enables you to save the decoder’s internal
state information for use in a subsequent invocation of this function.
Repeated calls to this function are useful if your data is partitioned into
a series of smaller vectors that you process within a loop, for example.

decoded = ...
vitdec(...,'cont',...,initmetric,initstates,initinputs) is the
same as the earlier syntaxes, except that the decoder starts with
its state metrics, traceback states, and traceback inputs specified
by initmetric, initstates, and initinputs, respectively. Each
real number in initmetric represents the starting state metric
of the corresponding state. initstates and initinputs jointly
specify the initial traceback memory of the decoder; both are
trellis.numStates-by-tblen matrices. initstates consists of integers
between 0 and trellis.numStates-1. If the encoder schematic has

15-345

vitdec

more than one input stream, then the shift register that receives the
first input stream provides the least significant bits in initstates,
while the shift register that receives the last input stream provides the
most significant bits in initstates. The vector initinputs consists of
integers between 0 and trellis.numInputSymbols-1. To use default
values for all of the last three arguments, specify them as [],[],[].

[decoded,finalmetric,finalstates,finalinputs] = ...
vitdec(...,'cont',...) is the same as the earlier syntaxes, except
that the final three output arguments return the state metrics,
traceback states, and traceback inputs, respectively, at the end of the
decoding process. finalmetric is a vector with trellis.numStates
elements that correspond to the final state metrics. finalstates and
finalinputs are both matrices of size trellis.numStates-by-tblen.
The elements of finalstates have the same format as those of
initstates.

Examples The example below encodes random data and adds noise. Then it
decodes the noisy code three times to illustrate the three decision types
that vitdec supports. Notice that for unquantized and soft decisions,
the output of convenc does not have the same data type that vitdec
expects for the input code, so it is necessary to manipulate ncode before
invoking vitdec. Notice also that the bit error rate computations must
account for the delay that the continuous operation mode incurs.

trel = poly2trellis(3,[6 7]); % Define trellis.
msg = randint(100,1,2,123); % Random data
code = convenc(msg,trel); % Encode.
ncode = rem(code + randerr(200,1,[0 1;.95 .05]),2); % Add noise.
tblen = 3; % Traceback length
decoded1 = vitdec(ncode,trel,tblen,'cont','hard'); %Hard decision
% Use unquantized decisions.
ucode = 1-2*ncode; % +1 & -1 represent zero & one, respectively.
decoded2 = vitdec(ucode,trel,tblen,'cont','unquant');
% To prepare for soft-decision decoding, map to decision values.
[x,qcode] = quantiz(1-2*ncode,[-.75 -.5 -.25 0 .25 .5 .75],...
[7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.

15-346

vitdec

decoded3 = vitdec(qcode',trel,tblen,'cont','soft',3);
% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
[n1,r1] = biterr(decoded1(tblen+1:end),msg(1:end-tblen));
[n2,r2] = biterr(decoded2(tblen+1:end),msg(1:end-tblen));
[n3,r3] = biterr(decoded3(tblen+1:end),msg(1:end-tblen));
disp(['The bit error rates are: ',num2str([r1 r2 r3])])

The output is

The bit error rates are: 0.020619 0.020619 0.020619

The example below illustrates how to use the final state and initial
state arguments when invoking vitdec repeatedly. Notice that
[decoded4;decoded5] is the same as decoded6.

trel = poly2trellis(3,[6 7]);
code = convenc(randint(100,1,2,123),trel);
% Decode part of code, recording final state for later use.
[decoded4,f1,f2,f3] = vitdec(code(1:100),trel,3,'cont','hard');
% Decode the rest of code, using state input arguments.
decoded5 = vitdec(code(101:200),trel,3,'cont','hard',f1,f2,f3);
% Decode the entire code in one step.
decoded6 = vitdec(code,trel,3,'cont','hard');
isequal(decoded6,[decoded4; decoded5])

The output is

ans =

1

For additional examples, see “Examples of Convolutional Coding” on
page 6-40.

See Also convenc, poly2trellis, istrellis, vitsimdemo, vitsimexample,
“Convolutional Coding” on page 6-30

15-347

matlab:%20playshow%20vitsimdemo;

vitdec

References [1] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein,
Data Communications Principles, New York, Plenum, 1992.

15-348

wgn

Purpose Generate white Gaussian noise

Syntax y = wgn(m,n,p)
y = wgn(m,n,p,imp)
y = wgn(m,n,p,imp,state)
y = wgn(...,powertype)
y = wgn(...,outputtype)

Description y = wgn(m,n,p) generates an m-by-n matrix of white Gaussian noise.
p specifies the power of y in decibels relative to a watt. The default
load impedance is 1 ohm.

y = wgn(m,n,p,imp) is the same as the previous syntax, except that
imp specifies the load impedance in ohms.

y = wgn(m,n,p,imp,state) is the same as the previous syntax, except
that wgn first resets the state of the normal random number generator
randn to the integer state.

y = wgn(...,powertype) is the same as the previous syntaxes, except
that the string powertype specifies the units of p. Choices for powertype
are ’dBW’, ’dBm’, and ’linear’.

y = wgn(...,outputtype) is the same as the previous syntaxes,
except that the string outputtype specifies whether the noise is
real or complex. Choices for outputtype are ’real’ and ’complex’. If
outputtype is ’complex’, then the real and imaginary parts of y each
have a noise power of p/2.

Examples To generate a column vector of length 100 containing real white
Gaussian noise of power 0 dBW, use this command:

y1 = wgn(100,1,0);

To generate a column vector of length 100 containing complex white
Gaussian noise, each component of which has a noise power of 0 dBW,
use this command:

y2 = wgn(100,1,0,'complex');

15-349

wgn

See Also randn, awgn, Chapter 2, “Signal Sources”

15-350

A

Examples

A Examples

Modulation
“Modulating a Random Signal” on page 1-4
“Incorporating Gray Coding” on page 1-15
“Analog Modulation Example” on page 8-6
“Examples of Digital Modulation and Demodulation” on page 8-9
“Plotting Signal Constellations” on page 8-12

A-2

Special Filters

Special Filters
“Pulse Shaping Using a Raised Cosine Filter” on page 1-17
“Example: Compensating for Group Delays When Analyzing Data” on
page 9-3
“Example: Raised Cosine Filter Delays” on page 9-10
“Using rcosine and rcosflt to Implement Square-Root Raised Cosine
Filters” on page 9-11

A-3

A Examples

Convolutional Coding
“Using a Convolutional Code” on page 1-21
“Example: A MATLAB Trellis Structure” on page 6-37
“Hard-Decision Decoding” on page 6-38
“Example: Soft-Decision Decoding” on page 6-39
“Example: A Rate-2/3 Feedforward Encoder” on page 6-40
“Example: A Punctured Convolutional Code” on page 6-42

A-4

Simulating Communication Systems

Simulating Communication Systems
“Using BERTool to Run Simulations” on page 1-26
“Varying Parameters and Managing a Set of Simulations” on page 1-33
“Example: Using a MATLAB Simulation with BERTool” on page 4-20
“Template for a Simulation Function” on page 4-28
“Example: Preparing a Simulation Function for Use with BERTool” on
page 4-31
“Example: Using a Simulink Model with BERTool” on page 4-36
“Example: Preparing a Model for Use with BERTool” on page 4-44

A-5

A Examples

Performance Evaluation
“Example: Computing Error Rates” on page 3-3
“Example: Using the Semianalytic Technique” on page 3-7
“Comparing Theoretical and Empirical Error Rates” on page 3-10
“Example: Curve Fitting for an Error Rate Plot” on page 3-14
“Example: Eye Diagrams” on page 3-19
“Example: Scatter Plots” on page 3-22
“Example: Using the Theoretical Panel in BERTool” on page 4-8
“Example: Using the Semianalytic Panel in BERTool” on page 4-15

A-6

Source Coding

Source Coding
“Scalar Quantization Example 1” on page 5-3
“Scalar Quantization Example 2” on page 5-3
“Example: Optimizing Quantization Parameters” on page 5-6
“Example: DPCM Encoding and Decoding” on page 5-8
“Example: Comparing Optimized and Nonoptimized DPCM Parameters”
on page 5-10
“Example: A µ-Law Compander” on page 5-12
“Example: Creating and Decoding a Huffman Code” on page 5-15
“Example: Creating and Decoding an Arithmetic Code” on page 5-16

A-7

A Examples

Block Coding
“Example: Reed-Solomon Coding Syntaxes” on page 6-7
“Example: Detecting and Correcting Errors in a Reed-Solomon Code”
on page 6-9
“Example: BCH Coding Syntaxes” on page 6-13
“Example: Detecting and Correcting Errors in a BCH Code” on page 6-13
“Example: Using a Decoding Table” on page 6-22
“Example: Generic Linear Block Coding” on page 6-24

A-8

Interleaving

Interleaving
“Example: Block Interleavers” on page 7-3
“Example: Convolutional Interleavers” on page 7-7
“Effect of Delays on Recovery of Convolutionally Interleaved Data” on
page 7-10

A-9

A Examples

Channels
“Power of a Faded Signal” on page 10-15
“Comparing Empirical with Theoretical Results” on page 10-16
“Working with Delays” on page 10-18
“Quasi-Static Channel Modeling” on page 10-19
“Filtering Using a Loop” on page 10-22
“Example: Introducing Noise in a Convolutional Code” on page 10-24

A-10

Equalizers

Equalizers
“Example Illustrating the Basic Procedure” on page 11-8
“Equalizing Using a Training Sequence” on page 11-17
“Example: Equalizing Multiple Times, Varying the Mode” on page 11-20
“Example: Adaptive Equalization Within a Loop” on page 11-23
“Example: Continuous Operation Mode” on page 11-31
“Example: Using a Preamble” on page 11-34

A-11

A Examples

Galois Field Computations
“Example: Creating Galois Field Variables” on page 12-5
“Example: Addition and Subtraction” on page 12-14
“Example: Multiplication” on page 12-15
“Example: Exponentiation” on page 12-17
“Basic Manipulations of Galois Arrays” on page 12-21
“Example: Solving Linear Equations” on page 12-25
“Multiplication and Division of Polynomials” on page 12-30
“Roots of Polynomials” on page 12-32

A-12

Index

A
A-law companders 5-12
addition in Galois fields

even number of field elements 12-14
odd number of field elements 13-13

algdeintrlv function 15-2
algebraic interleavers 7-2
algintrlv function 15-4
algorithm objects

properties 11-12
specifying algorithm 11-11

amdemod function 15-7
ammod function 15-9
analog modulation 8-5

sample code 8-6
analog signals

representing 8-5
analog-to-digital conversion 5-1
arithdeco function 15-11
arithenco function 15-12
arithmetic codes 5-16

parameters 5-16
sample code 5-16

arithmetic in Galois fields
even number of field elements 12-13
odd number of field elements 13-13

AWGN channel 10-3
awgn function 15-13

B
baseband modulation 8-2

signals 8-9
BCH coding 6-11

functions 6-4
generator polynomial 6-21
sample code

using various coding methods 15-110
bchdec function 15-15
bchenc function 15-18

bchgenpoly function 15-25
berawgn function 15-27
bercoding function 15-30
berconfint function 15-33
berfading function 15-35
berfit function 15-37
bersync function 15-45
bertool function 15-48
BERTool GUI 4-1

data 4-49
exporting 4-49
importing 4-53
in data viewer 4-54

features 4-2
MATLAB simulation BER 4-20

confidence intervals 4-24
curve fitting 4-26
example 4-20
stopping the simulation 4-23

MATLAB simulation functions 4-27
DPSK example 4-31
QAM example 1-26
requirements 4-27
template 4-28

parts of the GUI 4-4
semianalytic BER 4-14

example 4-15
procedure 4-17

Simulink BER 4-35
example 4-36
stopping the simulation 4-39

Simulink models 4-41
example 4-44
requirements 4-41
tips 4-41

theoretical BER 4-7
example 4-8
types of systems 4-10

bi2de function 15-49
binary matrix format 6-17

Index-1

Index

sample code 15-109
binary numbers

order of digits 6-18
binary symmetric channel 10-24
binary vector format 6-15

sample code 15-109
binary-to-decimal conversion 15-49
bipolar random numbers 2-3
bit error rates

analyzing 4-1
MATLAB simulation 4-20
plots 3-13

multiple curves 1-33
semianalytic 3-5

BERTool GUI 4-14
simulation 3-2
Simulink simulation 4-35
theoretical 3-9

BERTool GUI 4-7
biterr function 15-51
bits

random 2-4
block coding 6-2

functions 6-4
techniques 6-3

block interleavers 7-2
sample code 7-3
supported methods 7-2

Bose-Chaudhuri-Hocquenghem (BCH)
coding 6-11
functions 6-4
generator polynomial 6-21
sample code

using various coding methods 15-110

C
carrier frequency 8-4

relative to sampling rate 8-4
carrier signal 8-4

channel objects 10-7
copying 10-8
creating 10-8
in loop 10-13

sample code 10-22
properties 10-9

linked 10-11
realistic values 10-12

repeatability 10-13
resetting 10-13
using 10-14

channels 10-1
AWGN 10-3
binary symmetric 10-24
combination of fading and AWGN 10-2
compensation for 10-14
fading 10-6

compensation for 10-14
delays 10-18
in loop 10-13
realistic modeling parameters 10-12
sample code 10-15

supported types 10-2
cma function 15-60
code generator matrices

converting to parity-check matrices 6-28
sample code 6-21

finding 6-28
representing 6-19

code generator polynomials
finding 6-26
representing 6-21

codebooks
optimizing 5-6

for DPCM 5-10
sample code 5-6
sample code for DPCM 5-10

representing 5-2
codewords

definition 6-4

Index-2

Index

representing 6-15
compand function 15-62
companders 5-12

sample code 5-12
complex envelope 8-9
compression

data 5-1
compressors 5-12

sample code 5-12
conjugate elements in Galois fields

even number of field elements 15-73
odd number of field elements 15-137

constellations
binary annotations 1-11
decimal annotations 8-13
Gray-coded

general QAM 8-14
square QAM 1-13

hexagonal
sample code 15-128

plotting procedure 8-12
PSK 8-13

constraint length
convolutional code 6-31

convdeintrlv function 15-65
convenc function 15-67
conversion

analog to digital 5-1
binary to decimal 15-49
binary to octal 6-32
decimal to binary 15-80
exponential to polynomial format

even number of field elements 12-17
odd number of field elements 13-9

generator matrices to parity-check
matrices 6-28
sample code 6-21

octal to decimal 15-247

polynomial to exponential format
even number of field elements 12-18
odd number of field elements 13-11

vectors to matrices 15-341
convintrlv function 15-69
convmtx function 15-71
convolution

over Galois fields 12-28
convolutional coding 6-30

adding to system 1-21
binary symmetric channel 10-24
examples 6-40
features 6-30
sample code 6-38
using polynomial description 6-30

sample code 6-33
using trellis description 6-34

convolutional interleavers 7-5
delays 7-9
sample code 7-7
supported types 7-6

correction vector 6-22
cosets

even number of field elements 15-73
odd number of field elements 15-137

cosets function 15-73
cyclgen function 15-75
cyclic coding 6-24

functions 6-4
generator polynomial 6-21
sample code 15-110

compared to generic linear coding 6-25
for tracking errors 15-85
using various coding methods 15-110

cyclotomic cosets
even number of field elements 15-73
odd number of field elements 15-137

cyclpoly function 15-77

Index-3

Index

D
de2bi function 15-80
decimal format 6-17

sample code 15-109
decision timing

eye diagrams 3-19
sample code for eye diagrams 3-20
sample code for scatter plots 3-22

decision-feedback equalizers 11-6
decode function 15-83
decoding tables 6-22
deintrlv function 15-87
delays

adaptive equalizers 11-21
convolutional interleavers 7-9
fading channels 10-18
MLSE equalizers 11-30

delta modulation 5-7
sample code 5-8
See also differential pulse code modulation

demodulation 8-1
determinants in Galois fields

even number of field elements 12-23
dfe function 15-88
dftmtx function 15-92
differential pulse code modulation (DPCM) 5-7

optimizing parameters 5-10
sample code 5-10

sample code 5-8
digital modulation 8-8

Gray-coded constellations 1-15
sample code 8-9
step-by-step example 1-4

digital signals
representing 8-8

discrete Fourier transforms
over Galois fields 12-28

distortion
from DPCM 5-10
from quantization 5-6

distspec function 15-94
division in Galois fields

even number of field elements 12-16
odd number of field elements 13-13

Doppler shifts 10-6
DPCM 5-7

optimizing parameters 5-10
sample code 5-10

sample code 5-8
dpcmdeco function 15-98
dpcmenco function 15-99
dpcmopt function 15-101
dpskdemod function 15-103
dpskmod function 15-105

E
Eb/No 10-3
encode function 15-107
equalize function 15-112
equalizer objects 11-8

copying 11-14
creating 11-13
properties 11-14

linked 11-14
specifying algorithm 11-10
using 11-17

equalizers 11-1
adaptive algorithms 11-10
decision-directed mode 11-19
decision-feedback 11-6
delays 11-21
fractionally spaced 11-5
in loop 11-22
procedure 11-8
reference tap 11-21
sample code

basic procedure 11-8
in loop 11-23
training mode 11-17

Index-4

Index

supported types 11-2
symbol-spaced 11-3
training mode 11-17

equalizers, MLSE 11-28
continuous operation 11-29
delays 11-30
preambles and postambles 11-33
sample code

continuous operation 11-31
preamble 11-34

error integers 2-4
error patterns 2-5
error rate plots 3-13

curve fitting 3-13
sample code

multiple curves 1-33
one curve 3-14

error rates
analyzing 4-1
bit versus symbol 3-3
MATLAB simulation 4-20
sample code 3-3
semianalytic 3-5

BERTool GUI 4-14
simulation 3-2
Simulink simulation 4-35
theoretical

BERTool GUI 4-7
theoretical results 3-9

error-control coding
adding to system 1-21
base 2 only 6-4
features of the toolbox 6-3
methods supported in toolbox 6-3
terminology and notation 6-4

error-correction capability
Hamming codes 6-22

Es/No 10-3
expanders 5-12

sample code 5-12

exponential format in Galois fields
odd number of field elements 13-4

exponentiation in Galois fields
even number of field elements 12-17

eye diagrams 3-19
sample code 3-19

eyediagram function 15-114

F
factorization

over Galois fields 12-24
faded signals 10-15
fading channels 10-6

compensation for 10-14
delays 10-18
in loop 10-13
realistic modeling parameters 10-12
sample code 10-15

feedback connection polynomials 6-32
fft function 15-116
fields, finite

even number of elements 12-1
odd number of elements 13-1

filter function
as a channel 15-117
Galois fields 15-118

filters
fading channels 10-7
Galois fields

even number of field elements 12-27
odd number of field elements 15-144

Hilbert transform 9-5
raised cosine 9-7

designing 9-13
designing and applying 9-8

square-root raised cosine 9-11
finite fields

even number of elements 12-1
odd number of elements 13-1

Index-5

Index

flat fading 10-7
fmdemod function 15-119
fmmod function 15-120
format of Galois field elements

converting to exponential format
even number of field elements 12-18
odd number of field elements 13-11

converting to polynomial format
even number of field elements 12-17
odd number of field elements 13-9

even number of field elements 12-4
odd number of field elements 13-4

Fourier transforms
over Galois fields 12-28

fractionally spaced equalizers 11-5
frequency-flat fading 10-7
frequency-selective fading 10-7
fskdemod function 15-121
fskmod function 15-123

G
Galois arrays 12-4

creating 12-4
manipulating variables 12-35
meaning of integers in 12-7

Galois fields
even number of elements 12-1
odd number of elements 13-1

Gaussian channel 10-3
Gaussian noise

generating 2-2
gen2par function 15-125
general multiplexed interleaver 7-6
generator matrices

converting to parity-check matrices 6-28
sample code 6-21

finding 6-28
representing 6-19

generator polynomials

finding 6-26
for convolutional code 6-31
representing 6-21

genqamdemod function 15-127
genqammod function 15-128
gf function 15-130
gfadd function 15-133
gfconv function 15-135
gfcosets function 15-137
gfdeconv function 15-139
gfdiv function 15-142
gffilter function 15-144
gflineq function 15-146
gfminpol function 15-148
gfmul function 15-149
gfpretty function 15-151
gfprimck function 15-153
gfprimdf function 15-154
gfprimfd function 15-156
gfrank function 15-159
gfrepcov function 15-160
gfroots function 15-162
gfsub function 15-164
gftable function 15-166
gftrunc function 15-167
gftuple function 15-168
gfweight function 15-172

H
hammgen function 15-174
Hamming coding 6-26

functions 6-4
sample code 6-22

using various coding methods 15-110
using various formats 15-109

single-error-correction 6-22
Hamming weight 15-172
hank2sys function 15-177
hard-decision decoding 6-38

Index-6

Index

heldeintrlv function 15-179
helical interleaver 7-6
helical scan interleavers 7-2
helintrlv function 15-182
helscandeintrlv function 15-186
helscanintrlv function 15-188
Hilbert filters

designing 9-5
hilbiir function 15-190
Huffman codes 5-14

dictionary 5-14
sample code 5-15

huffmandeco function 15-194
huffmandict function 15-196
huffmanenco function 15-199

I
ifft function 15-200
intdump function 15-201
integrate-and-dump operation 8-11
interleavers 7-1

block 7-2
sample code 7-3
supported methods 7-2

convolutional 7-5
delays 7-9
sample code 7-7
supported types 7-6

intrlv function 15-202
inverses in Galois fields

even number of field elements 12-23
odd number of elements 15-142

irreducible polynomials 13-17
isprimitive function 15-203
istrellis function 15-205

J
Jakes Doppler spectrum 10-7

K
K-factor for Rician channels 10-13

L
line-of-sight paths 10-6
linear algebra in Galois fields

even number of field elements 12-23
linear block coding 6-23

sample code 6-24
linear predictors 5-7

optimizing 5-10
sample code 5-10

representing 5-7
lineareq function 15-208
list of elements of Galois fields

even number of field elements 12-6
odd number of field elements 13-5

generating 13-11
Lloyd algorithm 5-6
lloyds function 15-212
lms function 15-215
log function 15-217
logarithms in Galois fields

even number of field elements 12-18
logical operations in Galois fields

even number of field elements 12-19
lowpass equivalent method 8-2

M
marcumq function 15-218
mask2shift function 15-220
matdeintrlv function 15-222
matintrlv function 15-224
matrix interleavers 7-2
matrix manipulation in Galois fields

even number of field elements 12-21
messages

definition 6-4

Index-7

Index

representing
for coding functions 6-15

minimal polynomials in Galois fields
even number of field elements 12-33
odd number of field elements 13-18

minimum distance 15-172
minpol function 15-225
mldivide function 15-227
MLSE equalizers 11-28

continuous operation 11-29
delays 11-30
preambles and postambles 11-33
sample code

continuous operation 11-31
preamble 11-34

mlseeq function 15-229
modnorm function 15-233
modulation 8-1

analog 8-5
sample code 8-6

delta 5-7
sample code 5-8
See also differential pulse code

modulation
digital 8-8

sample code 8-9
step-by-step example 1-4

Gray-coded constellations 1-15
supported methods 8-2
terminology 8-4

Monte Carlo method for error-rate analysis 3-2
mskdemod function 15-235
mskmod function 15-238
mu-law companders 5-12

sample code 5-12
multipath channels 10-6

compensation for 10-14
delays 10-18
in loop 10-13
realistic modeling parameters 10-12

sample code 10-15
multiple roots over Galois fields

even number of field elements 12-32
odd number of field elements 15-162

multiplication in Galois fields
even number of field elements 12-15
odd number of field elements 13-13

muxdeintrlv function 15-240
muxintrlv function 15-242

N
noisebw function 15-243
noncausality 9-2
normlms function 15-245
Nyquist sampling theorem 8-4

O
oct2dec function 15-247
octal

conversion from binary 6-32
conversion to decimal 15-247

optimizing
DPCM parameters 5-10

sample code 5-10
quantization parameters 5-6

sample code 5-6
oqpskdemod function 15-248
oqpskmod function 15-249
order of digits in binary numbers 6-18

P
pamdemod function 15-250
pammod function 15-251
parity-check matrices

finding 6-28
representing 6-19

partitions

Index-8

Index

optimizing 5-6
for DPCM 5-10
sample code 5-6
sample code for DPCM 5-10

representing 5-2
passband modulation 8-2
pmdemod function 15-252
pmmod function 15-253
poly2trellis function 15-254
polynomial description of encoders 6-30

sample code 6-33
polynomial format in Galois fields

even number of field elements 12-7
odd number of field elements 13-5

polynomials
displaying formatted 13-16
generator 6-26

polynomials over Galois fields
arithmetic

even number of field elements 12-30
odd number of field elements 13-17

binary coefficients 12-32
evaluating

even number of field elements 12-31
even number of field elements 12-30
irreducible 13-17
minimal

even number of field elements 12-33
odd number of field elements 13-18

odd number of field elements 13-16
primitive, see primitive polynomials
roots

even number of field elements 12-32
odd number of field elements 13-18

postambles 11-33
preambles 11-33

sample code 11-34
predictive error 5-7
predictive order 5-7
predictive quantization 5-7

optimizing parameters 5-10
sample code 5-10

sample code 5-8
predictors 5-7

linear 5-7
optimizing 5-10

sample code 5-10
representing 5-7

primitive elements 12-3
representing 12-8

primitive polynomials
consistent use 13-7
default

even number of field elements 12-10
odd number of field elements 13-8

definition 12-3
even number of field elements 12-8
odd number of field elements 13-17

primpoly function 15-258
pskdemod function 15-261
pskmod function 15-264
pulse shaping

rectangular 8-11
sample code 1-17

punctured convolutional code 6-42

Q
qamdemod function 15-265
qammod function 15-267
qfunc function 15-268
qfuncinv function 15-269
quantiz function 15-271
quantization 5-1

coding 5-4
DPCM parameters, optimizing 5-10

sample code 5-10
optimizing parameters 5-6

sample code 5-6

Index-9

Index

predictive 5-7
sample code 5-8

sample code 5-3
vector 5-1

quasi-static channel modeling 10-19

R
raised cosine filters

designing and applying 9-8
designing but not applying 9-13
filtering with 9-7
sample code 1-17
square-root 9-11

randdeintrlv function 15-273
randerr function 15-274
randint function 15-276
randintrlv function 15-277
random

bipolar symbols 2-3
bits 2-4

in error patterns 2-5
integers 2-4
signals 2-1
symbols 2-3

random interleavers 7-2
randsrc function 15-278
rank

in Galois fields
even number of field elements 12-24
odd number of elements 15-159

Rayleigh fading channels 10-6
compensation for 10-14
delays 10-18
in loop 10-13
realistic modeling parameters 10-12
sample code 10-15

rayleighchan function 15-280
rcosfir function 15-285
rcosflt function 15-287

rcosiir function 15-290
rcosine function 15-293
rectangular pulse shaping 8-11
rectpulse function 15-295
Reed-Solomon coding

functions 6-4
generator polynomial 6-21

references
convolutional coding 6-43
error-control coding 6-28
Galois fields 12-40
modulation/demodulation 8-17

repeatability
fading channels 10-13

representing
analog signals 8-5
codewords 6-15
decoding tables 6-22
digital signals 8-8
Galois field elements

even number of field elements 12-4
odd number of field elements 13-4

Galois fields
even number of field elements 12-6
odd number of field elements 13-5

generator matrices 6-19
generator polynomials 6-21
messages

for coding functions 6-15
parity-check matrices 6-19
polynomials over Galois fields

even number of field elements 12-30
odd number of field elements 13-16

predictors 5-7
reset function

for channels 15-297
for equalizers 15-299

Rician fading channels 10-6
compensation for 10-14
delays 10-18

Index-10

Index

in loop 10-13
realistic modeling parameters 10-12
sample code 10-19

ricianchan function 15-300
rls function 15-304
roots

over Galois fields
binary polynomials 12-32
even number of field elements 12-32
odd number of field elements 13-18

rsdec function 15-307
rsdecof function 15-310
rsenc function 15-311
rsencof function 15-313
rsgenpoly function 15-315

S
sampling rate 8-4

relative to carrier frequency 8-4
scalar quantization 5-1

coding 5-4
sample code 5-3

scatter plots 3-22
sample code 3-22

scatterplot function 15-318
semianalytic function 15-320
semianalytic technique 3-5

procedure 3-6
sample code 3-7
when to use 3-5

shift2mask function 15-324
signal constellations

binary annotations 1-11
decimal annotations 8-13
Gray-coded

general QAM 8-14
square QAM 1-13

hexagonal
sample code 15-128

plotting procedure 8-12
PSK 8-13

signal formatting 5-1
signal sources 2-1
signlms function 15-327
simplifying formats of Galois field elements

exponential
odd number of field elements 13-11

polynomial
odd number of field elements 13-9

simulation functions for BERTool 4-27
sample code 1-26

simulation of communication systems
sample code 1-26

Simulink models for BERTool 4-41
SNR 10-3
soft-decision decoding 6-38

sample code 6-39
solving linear equations over Galois

fields 12-25
source coding 5-1
ssbdemod function 15-330
ssbmod function 15-332
subtraction in Galois fields

even number of field elements 12-14
odd number of field elements 13-13

symbol error rates
simulation 3-2

symbol-spaced equalizers 11-3
symerr function 15-333
syndrome 6-22
syndtable function 15-337

T
theoretical error rates 3-9

compared to empirical 3-10
plots 3-9

timing, decision
eye diagrams 3-19

Index-11

Index

sample code for eye diagrams 3-20
sample code for scatter plots 3-22

training data
for optimizing DPCM quantization

parameters 5-10
for optimizing quantization

parameters 5-6
trellis

description of encoder 6-34
structure 6-35

sample code 6-37
truncating polynomials over Galois fields

odd number of field elements 13-16

V
varlms function 15-338

vec2mat function 15-341
vector quantization 5-1
vitdec function 15-343

W
waterfall curves 3-13

curve fitting 3-13
sample code

multiple curves 1-33
one curve 3-14

weight, Hamming 15-172
wgn function 15-349
white Gaussian noise

generating 2-2

Index-12

	toc
	Getting Started
	What Is the Communications Toolbox?
	Expected Background
	For New Users
	For Experienced Users

	Studying Components of a Communication System
	Modulating a Random Signal
	Solution of Problem

	Plotting Signal Constellations
	Solution of Problem
	Examining the Plot

	Incorporating Gray Coding
	Solution of Problem
	Checking that the Mapping Works

	Pulse Shaping Using a Raised Cosine Filter
	Solution of Problem

	Using a Convolutional Code
	Solution of Problem
	More About Delays

	Simulating a Communication System
	Using BERTool to Run Simulations
	Solution of Problem
	Comparing with Theoretical Results
	More About the Simulation Structure

	Varying Parameters and Managing a Set of Simulations
	Solution of Problem

	Learning More
	Online Help
	Demos
	The MathWorks Online

	Signal Sources
	White Gaussian Noise
	Random Symbols
	Random Integers
	Random Bit Error Patterns

	Performance Evaluation
	Performance Results via Simulation
	Using Simulated Data to Compute Bit and Symbol Error Rates
	Example: Computing Error Rates
	Comparison of Symbol Error Rate and Bit Error Rate

	Performance Results via the Semianalytic Technique
	When to Use the Semianalytic Technique
	Procedure for the Semianalytic Technique
	Example: Using the Semianalytic Technique

	Theoretical Performance Results
	Plotting Theoretical Error Rates
	Comparing Theoretical and Empirical Error Rates

	Error Rate Plots
	Creating Error Rate Plots Using semilogy
	Curve Fitting for Error Rate Plots
	Example: Curve Fitting for an Error Rate Plot
	Setting Up Parameters for the Simulation
	Simulating the System Using a Loop
	Plotting the Empirical Results and the Fitted Curve

	Eye Diagrams
	Example: Eye Diagrams

	Scatter Plots
	Example: Scatter Plots

	Selected Bibliography for Performance Evaluation

	BERTool: A Bit Error Rate Analysis GUI
	Summary of Features
	Opening BERTool
	The BERTool Environment
	Components of BERTool
	Interaction Among BERTool Components

	Computing Theoretical BERs
	Example: Using the Theoretical Panel in BERTool
	Running the Theoretical Example

	Available Sets of Theoretical BER Data
	Combinations of Parameters for AWGN Channel Systems
	Combinations of Parameters for Rayleigh Channel Systems

	Using the Semianalytic Technique to Compute BERs
	Example: Using the Semianalytic Panel in BERTool
	Running the Semianalytic Example
	Visible Results of the Semianalytic Example

	Procedure for Using the Semianalytic Panel in BERTool
	Semianalytic Computations and Results

	Running MATLAB Simulations
	Example: Using a MATLAB Simulation with BERTool
	Varying the Stopping Criteria
	Plotting Confidence Intervals
	Fitting BER Points to a Curve

	Preparing Simulation Functions for Use with BERTool
	Requirements for Functions
	Input Arguments
	Output Arguments
	Simulation Operation

	Template for a Simulation Function
	Understanding the Template
	Using the Template

	Example: Preparing a Simulation Function for Use with BERTool
	Preparing the Function
	Using the Prepared Function

	Running Simulink Simulations
	Example: Using a Simulink Model with BERTool
	Varying the Stopping Criteria

	Preparing Simulink Models for Use with BERTool
	Requirements for Models
	Tips for Preparing Models
	Example: Preparing a Model for Use with BERTool

	Managing BER Data
	Exporting Data Sets or BERTool Sessions
	Exporting Data Sets
	Examining an Exported Structure
	Saving a BERTool Session

	Importing Data Sets or BERTool Sessions
	Importing Data Sets
	Opening a Previous BERTool Session

	Managing Data in the Data Viewer

	Source Coding
	Quantizing a Signal
	Representing Partitions
	Representing Codebooks
	Scalar Quantization Example 1
	Scalar Quantization Example 2
	Determining Which Interval Each Input Is In

	Optimizing Quantization Parameters
	Example: Optimizing Quantization Parameters

	Differential Pulse Code Modulation
	DPCM Terminology
	Representing Predictors
	Example: DPCM Encoding and Decoding

	Optimizing DPCM Parameters
	Example: Comparing Optimized and Nonoptimized DPCM Parameters

	Companding a Signal
	Example: A µ-Law Compander

	Huffman Coding
	Creating a Huffman Code Dictionary
	Example: Creating and Decoding a Huffman Code

	Arithmetic Coding
	Representing Arithmetic Coding Parameters
	Example: Creating and Decoding an Arithmetic Code

	Selected Bibliography for Source Coding

	Error-Control Coding
	Block Coding
	Block Coding Features of the Toolbox
	Block Coding Terminology
	Representing Words for Reed-Solomon Codes
	Parameters for Reed-Solomon Codes
	Allowable Values of Integer Parameters
	Generator Polynomial

	Creating and Decoding Reed-Solomon Codes
	Example: Reed-Solomon Coding Syntaxes
	Example: Detecting and Correcting Errors in a Reed-Solomon Code
	Excessive Noise in Reed-Solomon Codewords
	Creating Shortened Reed-Solomon Codes

	Representing Words for BCH Codes
	Parameters for BCH Codes
	Creating and Decoding BCH Codes
	Example: BCH Coding Syntaxes
	Example: Detecting and Correcting Errors in a BCH Code

	Representing Words for Linear Block Codes
	Binary Vector Format
	Binary Matrix Format
	Decimal Vector Format

	Parameters for Linear Block Codes
	Generator Matrix
	Parity-Check Matrix
	Generator Polynomial
	Decoding Table

	Creating and Decoding Linear Block Codes
	Generic Linear Block Codes
	Cyclic Codes
	Hamming Codes

	Performing Other Block Code Tasks
	Finding a Generator Polynomial
	Finding the Error-Correction Capability
	Finding Generator and Parity-Check Matrices
	Converting Between Parity-Check and Generator Matrices

	Selected Bibliography for Block Coding

	Convolutional Coding
	Convolutional Coding Features of the Toolbox
	Polynomial Description of a Convolutional Encoder
	Constraint Lengths
	Generator Polynomials
	Feedback Connection Polynomials
	Using the Polynomial Description in MATLAB

	Trellis Description of a Convolutional Encoder
	Specifying a Trellis in MATLAB
	How to Create a MATLAB Trellis Structure
	Example: A MATLAB Trellis Structure

	Creating and Decoding Convolutional Codes
	Encoding
	Hard-Decision Decoding
	Soft-Decision Decoding

	Examples of Convolutional Coding
	Example: A Rate-2/3 Feedforward Encoder
	Example: A Punctured Convolutional Code

	Selected Bibliography for Convolutional Coding

	Interleaving
	Block Interleavers
	Block Interleaving Features of the Toolbox
	Example: Block Interleavers

	Convolutional Interleavers
	Convolutional Interleaving Features of the Toolbox
	Example: Convolutional Interleavers
	Delays of Convolutional Interleavers
	Effect of Delays on Recovery of Convolutionally Interleaved Data
	Combining Interleaving Delays and Other Delays

	Selected Bibliography for Interleaving

	Modulation
	Modulation Features of the Toolbox
	Baseband Versus Passband Simulation

	Modulation Terminology
	Analog Modulation
	Representing Analog Signals
	Analog Modulation Example

	Digital Modulation
	Representing Digital Signals
	Baseband Modulated Signals Defined
	Examples of Digital Modulation and Demodulation
	Computing the Symbol Error Rate
	Combining Pulse Shaping and Filtering with Modulation

	Plotting Signal Constellations
	Examples of Signal Constellation Plots

	Selected Bibliography for Modulation

	Special Filters
	Noncausality and the Group Delay Parameter
	Example: Compensating for Group Delays When Analyzing Data

	Designing Hilbert Transform Filters
	Example with Default Parameters

	Filtering with Raised Cosine Filters
	Sampling Rates
	Maintaining the Input Sampling Rate

	Designing Filters Automatically
	Types of Raised Cosine Filters

	Specifying Filters Using Input Arguments
	Controlling the Rolloff Factor
	Controlling the Group Delay
	Example: Raised Cosine Filter Delays

	Combining Two Square-Root Raised Cosine Filters
	Using rcosine and rcosflt to Implement Square-Root Raised Cosine
	Using rcosflt Alone

	Designing Raised Cosine Filters
	Sampling Rates
	Example Designing a Square-Root Raised Cosine Filter
	Other Options in Filter Design

	Selected Bibliography for Special Filters

	Channels
	Channel Features of the Toolbox
	AWGN Channel
	Describing the Noise Level of an AWGN Channel
	Relationship Between E s /N 0 and E b /N 0
	Relationship Between E s /N 0 and SNR

	Fading Channels
	Overview of Fading Channels
	Fading Channel Features of the Toolbox

	Specifying Fading Channels
	Creating Channel Objects
	Viewing Object Properties
	Changing Object Properties
	Linked Properties of Channel Objects

	Configuring Channel Objects
	Choosing Realistic Channel Property Values
	Path Delays
	Average Path Gains
	Maximum Doppler Shifts
	K-Factor for Rician Fading Channels
	Configuring Channel Objects Based on Simulation Needs

	Using Fading Channels
	Compensating for Fading

	Examples Using Fading Channels
	Power of a Faded Signal
	Comparing Empirical with Theoretical Results
	Working with Delays
	Quasi-Static Channel Modeling
	Filtering Using a Loop

	Binary Symmetric Channel
	Example: Introducing Noise in a Convolutional Code

	Selected Bibliography for Channels

	Equalizers
	Equalizer Features of the Toolbox
	Overview of Adaptive Equalizer Classes
	Symbol-Spaced Equalizers
	Updating the Set of Weights
	Reference Signal and Operation Modes
	Error Calculation

	Fractionally Spaced Equalizers
	Decision-Feedback Equalizers

	Using Adaptive Equalizer Functions and Objects
	Basic Procedure for Equalizing a Signal
	Example Illustrating the Basic Procedure
	Learning More About Adaptive Equalizer Functions

	Specifying an Adaptive Algorithm
	Choosing an Adaptive Algorithm
	Indicating a Choice of Adaptive Algorithm
	Accessing Properties of an Adaptive Algorithm

	Specifying an Adaptive Equalizer
	Defining an Equalizer Object
	Duplicating and Copying Objects

	Accessing Properties of an Equalizer
	Linked Properties of an Equalizer Object

	Using Adaptive Equalizers
	Equalizing Using a Training Sequence
	Equalizing in Decision-Directed Mode
	Example: Equalizing Multiple Times, Varying the Mode

	Delays from Equalization
	Techniques for Working with Delays

	Equalizing Using a Loop
	Example: Adaptive Equalization Within a Loop
	Procedures for Equalizing Within a Loop

	Using MLSE Equalizers
	Equalizing a Vector Signal
	Equalizing in Continuous Operation Mode
	Procedure for Continuous Operation Mode
	Delays in Continuous Operation Mode
	Example: Continuous Operation Mode

	Using a Preamble or Postamble
	Example: Using a Preamble

	Selected Bibliography for Equalizers

	Galois Field Computations
	Galois Field Terminology
	Representing Elements of Galois Fields
	Creating a Galois Array
	When MATLAB Implicitly Creates a Galois Array

	Example: Creating Galois Field Variables
	Example: Representing Elements of GF(8)
	How Integers Correspond to Galois Field Elements
	Example: Representing a Primitive Element
	Primitive Polynomials and Element Representations
	Specifying the Primitive Polynomial
	Finding Primitive Polynomials
	Effect of Nondefault Primitive Polynomials on Numerical Results

	Arithmetic in Galois Fields
	Example: Addition and Subtraction
	Simplifying the Syntax

	Example: Multiplication
	Multiplication Table for GF(8)

	Example: Division
	Elementwise Division
	Matrix Division

	Example: Exponentiation
	Elementwise Exponentiation
	Matrix Exponentiation

	Example: Elementwise Logarithm

	Logical Operations in Galois Fields
	Testing for Equality
	Comparison of isequal and ==

	Testing for Nonzero Values

	Matrix Manipulation in Galois Fields
	Basic Manipulations of Galois Arrays
	Basic Information About Galois Arrays
	Positions of Nonzero Elements

	Linear Algebra in Galois Fields
	Inverting Matrices and Computing Determinants
	Computing Ranks
	Factoring Square Matrices
	Solving Linear Equations
	Example: Solving Linear Equations

	Signal Processing Operations in Galois Fields
	Filtering
	Convolution
	Example

	Discrete Fourier Transform

	Polynomials over Galois Fields
	Addition and Subtraction of Polynomials
	Multiplication and Division of Polynomials
	Evaluating Polynomials
	Roots of Polynomials
	Roots of Binary Polynomials
	Minimal Polynomials

	Manipulating Galois Variables
	Determining Whether a Variable Is a Galois Array
	Extracting Information from a Galois Array

	Speed and Nondefault Primitive Polynomials
	Selected Bibliography for Galois Fields

	Galois Fields of Odd Characteristic
	Galois Field Terminology
	Representing Elements of Galois Fields
	Exponential Format
	Polynomial Format
	List of All Elements of a Galois Field
	Example

	Nonuniqueness of Representations

	Default Primitive Polynomials
	Converting and Simplifying Element Formats
	Converting to Simplest Polynomial Format
	Example

	Example: Generating a List of Galois Field Elements
	Converting to Simplest Exponential Format
	Example

	Arithmetic in Galois Fields
	Arithmetic in Prime Fields
	Example: Addition Table for GF(5)

	Arithmetic in Extension Fields
	Example: Addition Table for GF(9)

	Polynomials over Prime Fields
	Cosmetic Changes of Polynomials
	Polynomial Arithmetic
	Characterization of Polynomials
	Example

	Roots of Polynomials
	Example: Roots of a Polynomial in GF(9)

	Other Galois Field Functions
	Selected Bibliography for Galois Fields

	Functions — Categorical List
	Signal Sources
	Performance Evaluation
	Source Coding
	Error-Control Coding
	Interleaving/Deinterleaving
	Analog Modulation/Demodulation
	Digital Modulation/Demodulation
	Pulse Shaping
	Special Filters
	Lower-Level Functions for Special Filters

	Channels
	Equalizers
	Galois Field Computations
	Computations in Galois Fields of Odd Characteristic
	Utilities
	Graphical User Interface

	Functions — Alphabetical List
	Examples
	Modulation
	Special Filters
	Convolutional Coding
	Simulating Communication Systems
	Performance Evaluation
	Source Coding
	Block Coding
	Interleaving
	Channels
	Equalizers
	Galois Field Computations

	tables
	Representing In-Phase and Quadrature Components of Signal
	Parameters Used in Block Coding Techniques
	Fields of a Trellis Structure for a Rate k/n Code
	Input Values for 3-bit Soft Decisions
	Delays of Interleaver/Deinterleaver Pairs
	Elements of GF(9)
	Behavior of gftuple Depending on Format of First Two Inputs
	Formats for Second Argument of gfroots
	Comparing a Two-Dimensional Matrix x with Another Input y
	Information Formats
	Fields of a Valid Trellis Structure for a Rate k/n Code
	Fields of the Output Structure trellis for a Rate k/n Code
	Writeable Properties
	Read-Only Properties
	Values of filter_type to Determine the Type of Filter
	Types of Filter and Corresponding Values of type_flag
	Writeable Properties
	Read-Only Properties
	Comparing a Two-Dimensional Matrix x with Another Input y
	Values of opmode Input
	Values of dectype Input

